Abstract:
A generator assembly may include a bearing liner and a bearing retainer configured to reduce vibration response in a bearing assembly under high frequency operation of a rotor. The bearing liner may be configured to provide a clearance between the bearing assembly and an adjacent housing/bearing liner to prevent high vibration output from the bearing assembly on for example, the rotor shaft. The bearing retainer may include a recess to accommodate axial movement of the bearing assembly in response to rotation of the rotor. In some embodiments, the bearing retainer may include a dampener to dampen contact of the bearing assembly with the retainer.
Abstract:
The present disclosure broadly relates to apparatuses and methods for generating electric power. More particularly, the present disclosure relates to a self-excited electric generator. The self-excited electric generator may include auxiliary windings to provide a source of electricity to an associated generator control unit (GCU). The apparatuses and methods of the present invention may provide added benefits of reducing excitation requirements from the GCU. Thereby, the apparatuses and methods may reduce cost, weight, and size of an electric generator, and may increase reliability of associated systems.
Abstract:
A generator assembly may include a bearing liner and a bearing retainer configured to reduce vibration response in a bearing assembly under high frequency operation of a rotor. The bearing liner may be configured to provide a clearance between the bearing assembly and an adjacent housing/bearing liner to prevent high vibration output from the bearing assembly on for example, the rotor shaft. The bearing retainer may include a recess to accommodate axial movement of the bearing assembly in response to rotation of the rotor. In some embodiments, the bearing retainer may include a dampener to dampen contact of the bearing assembly with the retainer.
Abstract:
The present disclosure broadly relates to apparatuses and methods for generating electric power. More particularly, the present disclosure relates to a self-excited electric generator. The self-excited electric generator may include auxiliary windings to provide a source of electricity to an associated generator control unit (GCU). The apparatuses and methods of the present invention may provide added benefits of reducing excitation requirements from the GCU. Thereby, the apparatuses and methods may reduce cost, weight, and size of an electric generator, and may increase reliability of associated systems.