Abstract:
The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
Abstract:
The present disclosure provides separation processes that use azeotropic or azeotropic-like compositions of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) that allow for improved recovery rates of 1-chloro-3,3,3-trifluoropropene during or after manufacturing processes. Such recovery or separation processes can utilize the unique properties of azeotropic or azeotropic-like composition with various combinations of separation techniques (e.g., distillation and decanting) that yield highly pure compositions of 1-chloro-3,3,3-trifluoropropene and simultaneously offer high yields of 1-chloro-3,3,3-trifluoropropene. Such highly pure compositions of 1-chloro-3,3,3-trifluoropropene may find useful applications in polymer technology as monomers or comonomers.
Abstract:
A process is described wherein otherwise unusable by-products from a process for the manufacture of trans HCFO-1233zd(E) are converted to a valuable product by introducing them into a process for the production of HFC-245fa. The process includes the catalytic hydrofluorination of a reaction mixture comprising the HCFO-1233zd production by-products.
Abstract:
The present disclosure provides high purity E-1,3,3,3-tetrafluoropropene (HFO-1234ze). More specifically, the present disclosure provides E-1,3,3,3-tetrafluoropropene (HFO-234ze) in at least 99.99% purity, containing less than 3 ppm 1,1,3,3,3-pentafluoropropene (HFO-1225zc). The present disclosure further provides a method of making high purity E-1,3,3,3-tetrafluoropropene (HFO-1234ze).
Abstract:
The present disclosure provides a method for conversion of a mixture of high-boiling fluorinated components comprising 1,1,3,3-tetrachloro-1-fluoropropane (HCFC-241fa), 1,3,3-trichloro-1,1-difluoropropane (HCFC-242fa), 1,1,3-trichloro-1,3-difluoropropane (HCFC-242fb), 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa), 1,3-dichloro-1,1,3-trifluoropropane (HCFC-243fb), 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa), their isomers, and combinations thereof, to 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd). Heavy impurities, such as oligomers and other high boiling impurities, that are present may be purged during the process to prevent yield loss and reduction of catalyst efficacy.
Abstract:
The present disclosure provides an integrated process for producing trifluoroiodomethane (CF3I), in three steps: a) reacting a first reactant stream comprising hydrogen (H2) and iodine (I2) in the presence of a first catalyst to produce a first product stream comprising hydrogen iodide (HI); (b) reacting the first product stream with a second reactant stream comprising trifluoroacetyl chloride (TFAC) in the presence of a second catalyst to produce an intermediate product stream comprising trifluoroacetyl iodide (TFAI); and (c) reacting the intermediate product stream to produce a final product stream comprising trifluoroiodomethane. (CF3I).
Abstract:
The present disclosure provides a method for conversion of a mixture of high-boiling fluorinated components comprising 1,1,3,3-tetrachloro-1-fluoropropane (HCFC-241fa), 1,3,3-trichloro-1,1-difluoropropane (HCFC-242fa), 1,1,3-trichloro-1,3-difluoropropane (HCFC-242fb), 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa), 1,3-dichloro-1,1,3-trifluoropropane (HCFC-243fb), 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa), their isomers, and combinations thereof, to 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd). Heavy impurities, such as oligomers and other high boiling impurities, that are present may be purged during the process to prevent yield loss and reduction of catalyst efficacy.
Abstract:
The present disclosure provides a method for conversion of a mixture of high-boiling fluorinated components comprising 1,1,3,3-tetrachloro-1-fluoropropane (HCFC-241fa), 1,3,3-trichloro-1, 1-difluoropropane (HCFC-242fa), 1,1,3-trichloro-1,3-difluoropropane (HCFC-242fb), 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa), 1,3-dichloro-1,1,3-trifluoropropane (HCFC-243fb), 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa), their isomers, and combinations thereof, to 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd). Heavy impurities, such as oligomers and other high boiling impurities, that are present may be purged during the process to prevent yield loss and reduction of catalyst efficacy.
Abstract:
High boiling fluorinated by-products obtained from a manufacturing process of 1-chloro-3,3,3-trifluoropropene (HFO-1233zd) not only include components that can be used as a starting material or feedstock in the production of 1,1,1,3,3-pentafluoropropane (HFC-245fa), but also contain impurities that can be detrimental in the HFC-245fa process. A method of providing an improved composition from the high boiling by-products obtained from an HFO-1233zd manufacturing process reduces these impurities. The improved composition can be used as a starting material or feedstock for the production of HFC-245fa.
Abstract:
A method for forming 2,3,3,3-tetrafluoropropene (HFO-1234yf) comprising providing a dehydrochlorination starting material having relatively low concentrations of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), especially and preferable less than about 8.0% when the dehydrochlorination reaction utilizes no substantial amount of catalyst or catalyst comprising austenitic nickel-based materials.