THROAT DISTRIBUTION FOR A ROTOR AND ROTOR BLADE HAVING CAMBER AND LOCATION OF LOCAL MAXIMUM THICKNESS DISTRIBUTION

    公开(公告)号:US20200158128A1

    公开(公告)日:2020-05-21

    申请号:US16198279

    申请日:2018-11-21

    Abstract: A rotor for a compressor includes a hub and a plurality of airfoils having a root, a tip opposite the root and a span that extends from 0% at the root to 100% at the tip. Each of the airfoils is coupled to the hub at the root and is spaced apart from adjacent ones of the airfoils over the span by a throat dimension. The throat dimension has a maximum value at a spanwise location between 60% of the span and 90% of the span of the adjacent ones of the airfoils, and at 10% of the span of the adjacent ones of the airfoils above or below the spanwise location of the maximum value, the throat dimension is less than 97% of the maximum value. The throat dimension at 5% of the span of the adjacent ones of the airfoils is less than 70% of the maximum value.

    Core-protecting fan modules and turbofan engines containing the same

    公开(公告)号:US10670040B2

    公开(公告)日:2020-06-02

    申请号:US15439430

    申请日:2017-02-22

    Abstract: Embodiments of a core-protecting fan module are provided, as are embodiments of a turbofan engine containing such a fan module. In an embodiment, the core-protecting fan module contains a nose member, a fan rotor downstream of the nose member, a full span stator downstream of the fan rotor, and a splitter structure downstream of the fan rotor. The fan rotor includes a plurality of fan blades, which extends from a rotor hub and which is angularly spaced about a rotational axis. Certain fundamental angular relationships are observed between the angles formed by rotational axis, the nose member, the fan rotor, and a leading edge of the splitter structure to reduce contaminant ingestion by the core flow path and to promote moisture shedding to reduce susceptibility to icing within the fan module, while further avoiding or minimizing negative impacts to other structural and functional aspects of the turbofan engine.

Patent Agency Ranking