Abstract:
An air data probe is provided. The air data probe includes a pitot probe having a mounting base or flange, support strut, and tube with a forward facing inlet that is configured to capture a total pressure of the surrounding air, at least three dams placed within the tube of the pitot probe for blocking the ballistic trajectory of water droplets or ice crystals from passing directly through the tube to a downstream pressure sensing element, and a heater element integrated into the tube of the pitot probe on the outside of the dams. The at least three dams are oriented within the tube of the pitot probe in such a way that the dam locations are configured for two or more installations of the air data probe.
Abstract:
An air data probe is provided. The air data probe includes a pitot probe having a mounting base or flange, support strut, and tube with a forward facing inlet that is configured to capture a total pressure of the surrounding air, at least three dams placed within the tube of the pitot probe for blocking the ballistic trajectory of water droplets or ice crystals from passing directly through the tube to a downstream pressure sensing element, and a heater element integrated into the tube of the pitot probe on the outside of the dams. The at least three dams are oriented within the tube of the pitot probe in such a way that the dam locations are configured for two or more installations of the air data probe.
Abstract:
In an embodiment, an ice-prevention dam for a pitot tube includes a body and a head. The body includes a notch having a substantially planar back, and the head extends from the body and has a substantially planar side that is substantially parallel to the back of the notch. Such a dam can prevent ice accumulation in a pitot tube, and can facilitate proper positioning of the dam. For example, during manufacture of a pitot tube, an assembler inserts the dam into a hole in a side of a pitot-tube body having a front opening such that the head of the dam is located outside of the pitot-tube body and a body of the dam is located inside of the pitot-tube body. Next, the assembler positions the dam by causing the substantially planar side of the dam head to be substantially parallel with the front opening of the pitot-tube body.
Abstract:
In an embodiment, an ice-prevention dam for a pitot tube includes a body and a head. The body includes a notch having a substantially planar back, and the head extends from the body and has a substantially planar side that is substantially parallel to the back of the notch. Such a dam can prevent ice accumulation in a pitot tube, and can facilitate proper positioning of the dam. For example, during manufacture of a pitot tube, an assembler inserts the dam into a hole in a side of a pitot-tube body having a front opening such that the head of the dam is located outside of the pitot-tube body and a body of the dam is located inside of the pitot-tube body. Next, the assembler positions the dam by causing the substantially planar side of the dam head to be substantially parallel with the front opening of the pitot-tube body.
Abstract:
An air data probe is provided. The air data probe includes a pitot probe having a mounting base or flange, support strut, and tube with a forward facing inlet that is configured to capture a total pressure of the surrounding air, at least three dams placed within the tube of the pitot probe for blocking the ballistic trajectory of water droplets or ice crystals from passing directly through the tube to a downstream pressure sensing element, and a heater element integrated into the tube of the pitot probe on the outside of the dams. The at least three dams are oriented within the tube of the pitot probe in such a way that the dam locations are configured for two or more installations of the air data probe.
Abstract:
An air data probe is provided. The air data probe includes a pitot probe having a mounting base or flange, support strut, and tube with a forward facing inlet that is configured to capture a total pressure of the surrounding air, at least three dams placed within the tube of the pitot probe for blocking the ballistic trajectory of water droplets or ice crystals from passing directly through the tube to a downstream pressure sensing element, and a heater element integrated into the tube of the pitot probe on the outside of the dams. The at least three dams are oriented within the tube of the pitot probe in such a way that the dam locations are configured for two or more installations of the air data probe.
Abstract:
An inlet door system includes a duct, an inlet door, and a plurality of openings. The duct is configured to extend from the auxiliary power unit (APU) to an intake opening formed in an outer surface of an aircraft. The duct includes an inlet port, an outlet port, and a duct sidewall extending between the inlet port and the outlet port. The inlet door includes an inner surface, an outer surface, and an outer peripheral edge between the inner and outer surfaces. The door is rotationally coupled to the duct, and is configured to selectively rotate between a closed position and a plurality of open positions. The openings extend through the inlet door between the inner surface and outer surface, and each opening is disposed adjacent to the outer peripheral edge.
Abstract:
An inlet door system includes a duct, an inlet door, and a plurality of openings. The duct is configured to extend from the auxiliary power unit (APU) to an intake opening formed in an outer surface of an aircraft. The duct includes an inlet port, an outlet port, and a duct sidewall extending between the inlet port and the outlet port. The inlet door includes an inner surface, an outer surface, and an outer peripheral edge between the inner and outer surfaces. The door is rotationally coupled to the duct, and is configured to selectively rotate between a closed position and a plurality of open positions. The openings extend through the inlet door between the inner surface and outer surface, and each opening is disposed adjacent to the outer peripheral edge.