Abstract:
An air data probe comprises an elongated body structure having a proximal end and a distal end, with the elongated body structure including an outer surface and an opposing inner surface that defines an interior channel. A probe tip is located at the distal end of the elongated body structure, with the probe tip including an outer surface and an inner surface that are contiguous with the outer an inner surfaces of the elongated body structure. The probe tip has an opening in communication with the interior channel that allows outside air to pass from the probe tip into the interior channel. An electrical heater cable is coupled to the elongated body structure and the probe tip. The electrical heater cable comprises a compact double layer helix portion coupled to the elongated body structure or the probe tip, or coupled to both the elongated body structure and the probe tip.
Abstract:
A turbine engine incorporating a fine particle separation means. The turbine engine includes: a compressor, a diffuser, and a flow path positioned downstream from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc that redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the extraction slot also being positioned downstream axially along the flow path from the arc. The turbine engine further includes an aspiration slot, downstream from the extraction slot, that allows air from the plenum to recirculate back into the flow path.
Abstract:
An air data probe comprises an elongated body structure having a proximal end and a distal end, with the elongated body structure including an outer surface and an opposing inner surface that defines an interior channel. A probe tip is located at the distal end of the elongated body structure, with the probe tip including an outer surface and an inner surface that are contiguous with the outer an inner surfaces of the elongated body structure. The probe tip has an opening in communication with the interior channel that allows outside air to pass from the probe tip into the interior channel. An electrical heater cable is coupled to the elongated body structure and the probe tip. The electrical heater cable comprises a compact double layer helix portion coupled to the elongated body structure or the probe tip, or coupled to both the elongated body structure and the probe tip.
Abstract:
A multi-part air data probe sensor assembly facilitating rapid replacement is provided. In one embodiment, an air data probe sensor assembly comprises a mount plate interface including at least one mount plate electrical connector configured to mate with electrical lines of an aircraft and at least one mount plate pneumatic connector configured to mate with pneumatic tubes of an aircraft; and a detachable sensor body having at least one sensor electrical connector that is coupled with the at least one mount plate electrical connector and at least one sensor pneumatic connector that is coupled with the at least one mount plate pneumatic connector; and a mechanical seal provided between the mount plate interface and the detachable sensor body, wherein the mechanical seal is composed of a moisture blocking material.
Abstract:
A turbine engine incorporating a fine particle separation means. The turbine engine includes: a compressor, a diffuser, and a flow path positioned downstream from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc that redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the extraction slot also being positioned downstream axially along the flow path from the arc. The turbine engine further includes an aspiration slot, downstream from the extraction slot, that allows air from the plenum to recirculate back into the flow path.
Abstract:
A multi-part air data probe sensor assembly facilitating rapid replacement is provided. One example air data probe sensor assembly comprises a mount plate interface including at least one mount plate electrical connector configured to mate with electrical lines of an aircraft and at least one mount plate pneumatic connector configured to mate with pneumatic tubes of an aircraft; and a detachable sensor body having at least one sensor electrical connector that is coupled with the at least one mount plate electrical connector and at least one sensor pneumatic connector that is coupled with the at least one mount plate pneumatic connector; and a mechanical seal provided between the mount plate interface and the detachable sensor body, wherein the mechanical seal is composed of a moisture blocking material.
Abstract:
Systems and methods for additive manufacturing for air data probes are provided. In at least one embodiment a probe comprises a support structure comprising one or more ports for receiving one or more fluids, the support structure comprising an endoskeleton mandrel having an opening for receiving a fluid; and a heating cable encircling an external surface of the endoskeleton mandrel. The probe also comprises an additive coating fused to the external surface of the endoskeleton mandrel and an external surface of the heating cable; and an internal assembly inside the support structure for carrying pressures from the one or more ports to one or more instruments that respond to the one or more fluids to provide a measurement.
Abstract:
Systems and methods for additive manufacturing for air data probes are provided. In at least one embodiment a probe comprises a support structure comprising one or more ports for receiving one or more fluids, the support structure comprising an endoskeleton mandrel having an opening for receiving a fluid; and a heating cable encircling an external surface of the endoskeleton mandrel. The probe also comprises an additive coating fused to the external surface of the endoskeleton mandrel and an external surface of the heating cable; and an internal assembly inside the support structure for carrying pressures from the one or more ports to one or more instruments that respond to the one or more fluids to provide a measurement.