Abstract:
A turbine engine incorporating a fine particle separation means. The turbine engine includes: a compressor, a diffuser, and a flow path positioned downstream from the diffuser, wherein the flow path comprises an outer annular wall and an inner annular wall between which the compressed air flows, and wherein the flow path comprises an arc that redirects the compressed air from flowing in a substantially radial flow direction to a substantially axial flow direction. The turbine engine further includes an extraction slot in the outer annular wall that fluidly connects with a scavenge plenum, the extraction slot also being positioned downstream axially along the flow path from the arc. The turbine engine further includes an aspiration slot, downstream from the extraction slot, that allows air from the plenum to recirculate back into the flow path.
Abstract:
A gas turbine engine includes a combustor having a combustor air inlet, an axial-centrifugal compressor, a shroud, a secondary flow duct, and a valve. The shroud surrounds at least a portion of the axial-centrifugal compressor and has a surge bleed plenum defined therein that is in fluid communication with, and receives compressed air from, the axial compressor outlet. The secondary airflow duct has a duct inlet that is in fluid communication with the surge bleed plenum, and a duct outlet that is in fluid communication with the combustor air inlet. The valve is mounted on the secondary airflow duct and is movable between a closed position, in which the secondary airflow duct does not provide fluid communication between the surge bleed plenum and the combustor air inlet, and an open position, in which the secondary airflow duct provides fluid communication between the surge bleed plenum and the combustor air inlet.
Abstract:
A method for scavenging small particles from a turbine engine includes directing compressed air through a flowpath, downstream of a compressor, which causes a reduction in a radial flow component and the introduction of or an increase in an axial flow component of the compressed air, removing a portion of the compressed air from the flowpath and directing the portion into a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the flowpath, and returning the portion of the compressed air from the plenum to the flowpath while maintaining a majority of the small particles that were present in the portion within the scavenge plenum. Further, the method includes removing the majority of small particles from the plenum. The step of removing occurs intermittently during engine operation, during engine shutdown, or while the engine is not in operation, but does not occur continuously during engine operation.
Abstract:
Gas turbine engines are provided that include an annular splitter nose structure configured to impinge an accelerated air stream within the gas turbine engine and separate the accelerated air stream into a primary air stream directed into a core duct and a secondary air stream directed into a bypass duct. The splitter nose structure may include a leading edge that is pitched radially outward relative to a rotational axis of the gas turbine engine at a pitch angle of between about 0.5 and 20 degrees. The splitter nose structure may include an irregular cross-sectional shape.
Abstract:
A gas turbine engine includes a combustor having a combustor air inlet, an axial-centrifugal compressor, a shroud, a secondary flow duct, and a valve. The shroud surrounds at least a portion of the axial-centrifugal compressor and has a surge bleed plenum defined therein that is in fluid communication with, and receives compressed air from, the axial compressor outlet. The secondary airflow duct has a duct inlet that is in fluid communication with the surge bleed plenum, and a duct outlet that is in fluid communication with the combustor air inlet. The valve is mounted on the secondary airflow duct and is movable between a closed position, in which the secondary airflow duct does not provide fluid communication between the surge bleed plenum and the combustor air inlet, and an open position, in which the secondary airflow duct provides fluid communication between the surge bleed plenum and the combustor air inlet.
Abstract:
Embodiments of an impeller shroud support for disposition around an impeller are provided, as are embodiments of gas turbine engine including impeller shroud supports. In one embodiment, the impeller shroud support includes a shroud body, a support arm joined to and extending around the shroud body, and a plurality of Mid-Impeller Bleed (MIB) flow passages. Each MIB flow passage includes, in turn, an inlet formed in the shroud body and configured to receive bleed air extracted from the impeller, a throat portion, an outlet formed in the support arm and through which the bleed air is discharged, and a curved intermediate section between the inlet and the outlet. During usage of the impeller shroud support, the curved intermediate section turns the bleed air flowing through the MIB passage in a radially outward direction prior to discharge from the outlet of the MIB flow passage.
Abstract:
Embodiments of a turbomachine, such as a gas turbine engine, are provided. In one embodiment, the turbomachine includes an impeller, a main intake plenum in fluid communication with the inlet of the impeller, and an impeller shroud recirculation system. The impeller shroud recirculation system includes an impeller shroud extending around at least a portion of the impeller and having a shroud port therein. A shroud port cover circumscribes at least a portion of the shroud port and cooperates therewith to at least partially define an impeller recirculation flow path. The impeller recirculation flow path has an outlet positioned to discharge airflow into the main intake plenum at a location radially outboard of the shroud port when pressurized air flows from the impeller, through the shroud port, and into the impeller recirculation flow path during operation of the turbomachine.
Abstract:
A method for scavenging small particles from a turbine engine includes directing compressed air through a flowpath, downstream of a compressor, which causes a reduction in a radial flow component and the introduction of or an increase in an axial flow component of the compressed air, removing a portion of the compressed air from the flowpath and directing the portion into a scavenge plenum, the scavenge plenum being positioned adjacent to and radially outward from the flow path, and returning the portion of the compressed air from the plenum to the flowpath while maintaining a majority of the small particles that were present in the portion within the scavenge plenum. Further, the method includes removing the majority of small particles from the plenum. The step of removing occurs intermittently during engine operation, during engine shutdown, or while the engine is not operation, but does not occur continuously during engine operation.
Abstract:
Embodiments of a turbomachine, such as a gas turbine engine, are provided. In one embodiment, the turbomachine includes an impeller, a main intake plenum in fluid communication with the inlet of the impeller, and an impeller shroud recirculation system. The impeller shroud recirculation system includes an impeller shroud extending around at least a portion of the impeller and having a shroud port therein. A shroud port cover circumscribes at least a portion of the shroud port and cooperates therewith to at least partially define an impeller recirculation flow path. The impeller recirculation flow path has an outlet positioned to discharge airflow into the main intake plenum at a location radially outboard of the shroud port when pressurized air flows from the impeller, through the shroud port, and into the impeller recirculation flow path during operation of the turbomachine.
Abstract:
An impeller associated with a compressor of a gas turbine engine includes a plurality of impeller blades. Each impeller blade of the plurality of impeller blades has a leading edge and a trailing edge opposite the leading edge in a streamwise direction. Each impeller blade of the plurality of impeller blades extends in a spanwise direction from a hub at 0% span to a tip at 100% span, and each impeller blade of the plurality of impeller blades has a plurality of mean camber lines that each extend from the leading edge to the trailing edge at a respective spanwise location. The leading edge includes a partially swept leading edge surface defined between 70% span to 100% span that extends in the streamwise direction between 3% to 15% of a mean camber line at 100% span.