Abstract:
An imaging apparatus includes a front lens group having a front lens element and a reflector, in that order from an object side. The reflector includes a reflection surface which reflects light rays, from the front lens element, toward a different direction; a rear lens group positioned closer to an image plane than the front lens group, the imaging apparatus performs an image-stabilizing operation by driving the front lens element, a movable frame holding the front lens element; a support member supporting the reflector and is immovable relative to an optical axis of the front lens element, in a reference state; and a support mechanism which supports the movable frame to spherically swing about a spherical-swinging center, positioned on an extension of the optical axis of the front lens element extending behind an underside of the reflection surface of the reflector.
Abstract:
A simulation is configured including: an image generation part configured to generate mutually different two images as an image which is viewed by right and left eyes respectively through a lens in a monovision prescription state, when a relation between a point spread function and a distance is set in a different state by wearing the lens in the monovision prescription state; and an image displayer configured to display the two different images generated by the image generation part individually for each of the right and left eyes of an examinee.
Abstract:
An imaging optical system includes a positive or negative first lens group, a diaphragm and a positive second lens group. The first lens group includes a positive lens element, provided closest to the object side, that has an aspherical surface on the object side thereof, the aspherical surface including a paraxial convex surface convexing toward the object side. This aspherical surface has a curvature that is positive along a meridional cross-section at the paraxial portion thereof, and the curvature of the meridional cross-section changes from a positive value to a negative value in an area within 75% of an effective aperture from the paraxial portion toward the periphery of the aspherical surface.
Abstract:
An imaging optical system includes a bending optical element which bends an object-emanating light bundle, a post-bending lens system on a post-bending optical axis defined by the bending optical element, and an image sensor. An effective optical surface of a large-diameter lens element, having a greatest axial light bundle effective radius, is formed into a non-circular shape by making a length of the effective optical surface from the post-bending optical axis toward a side opposite from the object side smaller than the axial light bundle effective radius, with reference to the axial light bundle effective radius lying on a plane which extends orthogonal to a plane including both the post-bending optical axis and a pre-bending optical axis of the imaging optical system and includes the post-bending optical axis.
Abstract:
An imaging optical system includes a positive first lens group, a diaphragm and a positive second lens group. The first lens group includes a positive lens element, provided closest to the object side, that has an aspherical surface on the object side thereof, the aspherical surface including a paraxial convex surface convexing toward the object side. This aspherical surface has a curvature that is positive along a meridional cross-section at the paraxial portion thereof, and the curvature of the meridional cross-section changes from a positive value to a negative value in an area within 75% of an effective aperture from the paraxial portion toward the periphery of the aspherical surface.
Abstract:
A zoom optical system includes a negative first lens group having a first deflection optical element, a positive second lens group, a positive third lens group, a positive fourth lens group, and a second deflection optical element, in that order from the object side. The first lens group is provided at a fixed position relative to an imaging plane. Zooming is performed by moving at least the second and third lens groups so that distances between adjacent lens groups of the first through fourth lens groups change. The third lens group is a focusing lens group which moves along the optical axis during focusing. The following condition (1) is satisfied: 0.2