Additively manufacturing components containing nickel alloys, and feedstocks for producing the same

    公开(公告)号:US12012646B1

    公开(公告)日:2024-06-18

    申请号:US16209036

    申请日:2018-12-04

    Abstract: Some variations provide an additively manufactured metal-containing component comprising (i) nickel, (ii) aluminum and/or titanium, and (iii) nanoparticles, wherein the sum of aluminum weight percentage and one-half of titanium weight percentage is at least 3 on a nanoparticle-free basis, and wherein the additively manufactured metal-containing component has a microstructure that is substantially crack-free with equiaxed grains. A feedstock composition is also provided, comprising metal-containing microparticles and nanoparticles, wherein the nanoparticles are chemically and/or physically disposed on surfaces of the microparticles, wherein the microparticles comprise (i) nickel and (ii) aluminum and/or titanium, and wherein the sum of aluminum weight percentage and one-half of titanium weight percentage is at least 3 on a nanoparticle-free basis. The nanoparticles may be selected from metals; ceramics; cermets; intermetallic alloys; oxides, carbides, nitrides, borides, or hydrides thereof; polymers; and/or carbon. Successful nanofunctionalization of MAR-M-247 nickel superalloy is demonstrated, creating a crack-free additively manufactured microstructure.

    APPARATUS FOR MAKING NANOPARTICLES AND NANOPARTICLE SUSPENSIONS

    公开(公告)号:US20190111489A1

    公开(公告)日:2019-04-18

    申请号:US16203292

    申请日:2018-11-28

    Abstract: A wire explosion assembly configured to form nanoparticles by exploding at least a segment of an electrically conductive wire. The wire explosion assembly includes a spool supporting the electrically conductive wire, a vessel defining a wire explosion chamber, means in the wire explosion chamber for pulling the electrically conductive wire off of the spool and applying tension on the segment of the electrically conductive wire, and a power source for delivering an electrical current to the segment of the electrically conductive wire. The electrical current is configured to explode the segment of the electrically conductive wire into the nanoparticles.

Patent Agency Ranking