Abstract:
Described is a system for an episodic memory used by an automated platform. The system acquires data from an episodic memory that comprises an event database, an event-sequence graph, and an episode list. Using the event-sequence graph, the system identifies a closest node to a current environment for the automated platform. Based on the closest node and using a hash function or key based on the hash function, the system retrieves from the event database an episode that corresponds to the closest node, the episode including a sequence of events. Behavior of the automated platform in the current environment is guided based on the data from the episodic memory.
Abstract:
Described is a system for an episodic memory used by an automated platform. The system acquires data from an episodic memory that comprises an event database, an event-sequence graph, and an episode list. Using the event-sequence graph, the system identifies a closest node to a current environment for the automated platform. Based on the closest node and using a hash function or key based on the hash function, the system retrieves from the event database an episode that corresponds to the closest node, the episode including a sequence of events. Behavior of the automated platform in the current environment is guided based on the data from the episodic memory.
Abstract:
Described is a system for decoding spiking reservoirs even when the spiking reservoir has continuous synaptic plasticity. The system uses a set of training patterns to train a neural network having a spiking reservoir comprised of spiking neurons. A test pattern duration d is estimated for a set of test patterns P, and each test pattern is presented to the spiking reservoir for a duration of d/P seconds. Output spikes from the spiking reservoir are generated via readout neurons. The output spikes are measured and the measurements are used to compute firing rate codes, each firing rate code corresponding to a test pattern in the set of test patterns P. The firing rate codes are used to decode performance of the neural network by computing a discriminability index (DI) to discriminate between test patterns in the set of test patterns P.
Abstract:
Described is a system for online vehicle recognition in an autonomous driving environment. Using a learning network comprising an unsupervised learning component and a supervised learning component, images of moving vehicles extracted from videos captured in the autonomous driving environment are learned and classified. Vehicle feature data is extracted from input moving vehicle images. The extracted vehicle feature data is clustered into different vehicle classes using the unsupervised learning component. Vehicle class labels for the different vehicle classes are generated using the supervised learning component. Based on a vehicle class label for a moving vehicle in the autonomous driving environment, the system selects an action to be performed by the autonomous vehicle, and causes the selected action to be performed by the autonomous vehicle in the autonomous driving environment.
Abstract:
A neural network, wherein a portion of the neural network comprises: a first array having a first number of neurons, wherein the dendrite of each neuron of the first array is provided for receiving an input signal indicating that a measured parameter gets closer to a predetermined value assigned to said neuron; and a second array having a second number of neurons, wherein the second number is smaller than the first number, the dendrite of each neuron of the second array forming an excitatory STDP synapse with the axon of a plurality of neurons of the first array; the dendrite of each neuron of the second array forming an excitatory STDP synapse with the axon of neighboring neurons of the second array.
Abstract:
Described is a system for online vehicle recognition in an autonomous driving environment. Using a learning network comprising an unsupervised learning component and a supervised learning component, images of moving vehicles extracted from videos captured in the autonomous driving environment are learned and classified. Vehicle feature data is extracted from input moving vehicle images. The extracted vehicle feature data is clustered into different vehicle classes using the unsupervised learning component. Vehicle class labels for the different vehicle classes are generated using the supervised learning component. Based on a vehicle class label for a moving vehicle in the autonomous driving environment, the system selects an action to be performed by the autonomous vehicle, and causes the selected action to be performed by the autonomous vehicle in the autonomous driving environment.
Abstract:
Described is a system for decoding spiking reservoirs even when the spiking reservoir has continuous synaptic plasticity. The system uses a set of training patterns to train a neural network having a spiking reservoir comprised of spiking neurons. A test pattern duration d is estimated for a set of test patterns P, and each test pattern is presented to the spiking reservoir for a duration of d/P seconds. Output spikes from the spiking reservoir are generated via readout neurons. The output spikes are measured and the measurements are used to compute firing rate codes, each firing rate code corresponding to a test pattern in the set of test patterns P. The firing rate codes are used to decode performance of the neural network by computing a discriminability index (DI) to discriminate between test patterns in the set of test patterns P.
Abstract:
A neural network, wherein a portion of the neural network comprises: a first array having a first number of neurons, wherein the dendrite of each neuron of the first array is provided for receiving an input signal indicating that a measured parameter gets closer to a predetermined value assigned to said neuron; and a second array having a second number of neurons, wherein the second number is smaller than the first number, the dendrite of each neuron of the second array forming an excitatory STDP synapse with the axon of a plurality of neurons of the first array; the dendrite of each neuron of the second array forming an excitatory STDP synapse with the axon of neighboring neurons of the second array.