Abstract:
In some variations, an apparatus provides real-time monitoring of voltage and differential voltage of both anode and cathode in a battery configured with at least one reference electrode. Voltage monitors are connected to a computer programmed for receiving anode voltage signals; receiving cathode voltage signals; calculating the derivative of the anode voltage with respect to time or with respect to capacity; and calculating the derivative of the cathode voltage with respect to time or with respect to capacity. Other variations provide an apparatus for real-time assessment of capacities of both anode and cathode in a battery, comprising a computer programmed for receiving electrode voltage signals; estimating first and second electrode open-circuit voltages at two different times, and correlating the first and second electrode open-circuit voltages to first and second electrode states of charge, respectively, for each of anode and cathode. The anode and cathode capacities may then be estimated independently.
Abstract:
The present invention provides methods for fabricating a fuel cell membrane structure that can dramatically reduce fuel crossover, thereby improving fuel cell efficiency and power output. Preferred composite membrane structures include an inorganic layer situated between the anode layer and the proton-exchange membrane. The inorganic layer can conduct protons in unhydrated form, rather than as hydronium ions, which reduces fuel crossover. Some methods of this invention include certain coating steps to effectively deposit an inorganic layer on an organic proton-exchange membrane.
Abstract:
A lithium-ion battery structure with a third electrode as reference electrode is disclosed. The reference electrode may be fabricated from lithium metal, lithiated carbon, or a variety of other lithium-containing electrode materials. A porous current collector allows permeation of reference lithium ions from the reference electrode to the cathode or anode, enabling voltage monitoring under actual operation of a lithium-ion battery. The reference electrode therefore does not need to be spatially between the battery anode and cathode, thus avoiding a shielding effect. The battery structure includes an external reference circuit to dynamically display the anode and cathode voltage. The battery structure can result in improved battery monitoring, enhanced battery safety, and extended battery life.