Abstract:
Embodiments of the present invention relate to the field of network communications and specifically discloses a method for monitoring optical performance of a wavelength channel, including: receiving, by a first node, an optical signal over an operating wavelength and obtaining, by the first node, optical performance of the unestablished wavelength channel by monitoring the optical signal at a receiving end. Embodiments of the present invention further disclose a system and a node device for monitoring optical performance of a wavelength channel.
Abstract:
An optical signal processing method and a coherent receiver, wherein an in-phase signal XI in a first polarization direction and an in-phase signal YI in a second polarization direction are added up to obtain a signal I; a quadrature signal XQ in the first polarization direction and a quadrature signal YQ in the second polarization direction are added up to obtain a signal Q; and quantization, combination, and digital signal processing are performed on the I and the Q. After summation, two signals need to be quantized. Therefore, a quantity of ADCs is reduced by half. In addition, because power consumption of a summation component is less than that of an ADS, power consumption of optical signal processing can be reduced. In addition, because there is a preset value, the summation may be performed after phase-inversion is performed on one analog signal, thereby avoiding a signal loss caused by the summation.
Abstract:
The present invention discloses a method and an apparatus for determining a gain of a Raman optical amplifier and a Raman optical amplifier. The method includes: acquiring present gain parameter information of a Raman optical amplifier; and determining a present gain of a monitoring channel of the Raman optical amplifier according to the present gain parameter information and a correspondence between a gain of the monitoring channel of the Raman optical amplifier and gain parameter information. According to the method and apparatus for determining a gain of a Raman optical amplifier and the Raman optical amplifier that are in embodiments of the present invention, a present gain of a monitoring channel can be accurately determined; therefore, a gain spectrum of the Raman optical amplifier can be accurately monitored, and the gain of the Raman optical amplifier can be accurately adjusted to a target gain.
Abstract:
Embodiments of this application disclose an optoelectronic component and a fabrication method thereof. The optoelectronic component includes a capacitor, an inductor, a carrier component, and an optoelectronic element, where the capacitor, the inductor, and the optoelectronic element are all disposed on the carrier component. The inductor and the capacitor are configured to form a resonant circuit, where a resonance frequency of the resonant circuit is correlated with a signal output frequency of the optoelectronic element. A first electrode of the optoelectronic element is connected to a first electrode of the carrier component through the inductor, and a second electrode of the optoelectronic element is connected to a second electrode of the carrier component. A first electrode of the capacitor is connected to the first electrode of the carrier component, and a second electrode of the capacitor is connected to the second electrode of the carrier component.
Abstract:
This application relates to the communications field, and discloses a signal transmitting method and apparatus, a transmitter, and a signal transmission system. An example method includes: generating a real-number-type signal; performing phase rotation processing on the real-number-type signal to obtain a complex-number-type signal, where a value of a real part signal of the complex-number-type signal is equal to a value of an imaginary part signal of the complex-number-type signal; and transmitting the complex-number-type signal to a receiver.