Abstract:
The embodiments of the present invention disclose a method and an apparatus for determining a gain of a Raman optical amplifier and a Raman optical amplifier. The method includes: acquiring present gain parameter information of a Raman optical amplifier; and determining a present gain of a monitoring channel of the Raman optical amplifier according to the present gain parameter information and a correspondence between a gain of the monitoring channel of the Raman optical amplifier and gain parameter information. According to the method and apparatus for determining a gain of a Raman optical amplifier and the Raman optical amplifier that are in embodiments of the present invention, a present gain of a monitoring channel can be accurately determined; therefore, a gain spectrum of the Raman optical amplifier can be accurately monitored, and the gain of the Raman optical amplifier can be accurately adjusted to a target gain.
Abstract:
Devices and methods for lessening a thermal dependence of gain profile of an optical amplifier are disclosed. An optical beam is split in a plurality of sub-beams with a thermally variable power splitting ratio, e.g. one sub-beam may travel a longer optical path length than another. When the sub-beams are recombined, they interfere with each other, causing the throughput to be wavelength dependent. An amplitude of this wavelength dependence is thermally variable due to the thermally variable power splitting ratio. The thermally variable power splitting ratio and the optical path length difference are selected so as to offset a thermal variation of a spectral gain profile of an optical amplifier.
Abstract:
A fiber-MOPA includes a seed-pulse source followed by fiber amplifier stages. The seed pulse source delivers signal pulses for performing a laser operation and delivers radiation between the seed pulses to maintain the collective average of the seed pulse power and intermediate radiation power constant. Keeping this average power constant keeps the instantaneous available gain of the fiber amplifier stages constant. This provides that the seed pulse delivery can be changed from one regime to a next without a period of instability between the regimes.
Abstract:
An optical amplifier includes a rare-earth doped optical fiber or rare-earth doped optical waveguide serving as an amplification medium where rare-earth ions have been doped in its core and/or clad, an excitation mechanism for exciting the amplification medium, and a plurality of optical resonator that causes laser oscillation at a plurality of wavelengths of amplified spontaneous emission light produced in the amplification medium.
Abstract:
An optical amplifier includes a rare-earth doped optical fiber or rare-earth doped optical waveguide serving as an amplification medium where rare-earth ions have been doped in its core and/or clad, an excitation mechanism for exciting the amplification medium, an optical resonator that causes laser oscillation at one or more wavelength of spontaneous emission light produced and amplified in the amplification medium, a monitoring mechanism that monitors a power of at least one light selected from a power of at least one light with at least one prescribed wavelength band selected from the light inputted to the amplification medium and a power of at least one light selected from a power of at least one light with at least one prescribed wavelength band selected from the light outputted from the amplification medium, and a control unit that controls the excitation mechanism based on a value from monitoring mechanism.
Abstract:
Laser light (λL) within a spectrum range is generated (51g) and filtered (29g). Thereby the spectral location of the filter characteristic (λF) is shifted in a controlled manner (60) to establish a desired characteristic of output laser light as for considering a temperature depended shift (ΔÑ) of the spectrum range generated by the laser source (51g).
Abstract:
Provided is an apparatus and method for all-optically controlling both a gain and a gain flattening. The apparatus includes: a first amplifier automatically controlling a gain of the apparatus through a feedback loop while amplifying a received optical signal; a fixed gain flattening unit receiving the amplified optical signal from the first amplifier and compensating for the gain according to a wavelength of the received optical signal; and a second amplifier automatically controlling the gain through a feedback loop while amplifying the optical signal input from the fixed gain flattening unit. Accordingly, even if the number of channels of an input WDM optical signal varies, both of a gain and a gain flattening can be all-optically controlled.
Abstract:
An optical amplifier system is disclosed comprising a Thulium-doped fiber span, a pump system, and a feedback loop. The Thulium-doped fiber span receives input optical signals. The pump system pumps light having a wavelength in the range of 1049 nm to 1060 nm onto the Thulium-doped fiber span. The light amplifies the input optical signals to generate amplified optical signals. The Thulium-doped fiber span transfers the amplified optical signals. The feedback loop receives at least one wavelength of amplified emissions from the Thulium-doped fiber span. The feedback loop generates optical feedback signals based the wavelength or wavelengths of the amplified emissions. The feedback loop adds the optical feedback signals to the input optical signals to provide clamping of a gain in the amplified optical signals.
Abstract:
The present invention provides a closed loop control strategy using system wavelength profile information to provide accurate derivation of Raman gain in a fiber optic span. The present invention overcomes prior art limitations in which a desired Raman gain is estimated on the basis of a modeled solution, without taking into account the dynamic nature of the system span profiles. The method and system according to the present invention provide an improved method of calculating Raman gain which permits dynamic adjustments to system parameters, thus correcting gain inaccuracies induced by the application of known models and permitting an accurate derivation of the Raman gain. Cost-effective optical spectrum analyzers are used to monitor wavelength profiles, which permits the mapping of transmit and receive profiles within a span. This mapping information is then collected in a central location, such that the Raman gain within the span may be derived.
Abstract:
An optical amplifier has a gain profile which is substantially flat and independent, over a wide range, of the pump power, power of the input signals, and the number of input signals. The amplifier utilizes an optical resonator having a gain medium whose gain broadening behaves inhomogeneously by pumping the gain medium at at least one wavelength in at least one absorption tail of the gain medium. The resonator is a ring resonator that preferably includes an erbium-doped fiber. Codopants may be added to the fiber to enhance the inhomogeneous broadening effect. A method of gain flattening introduces a pump signal into a gain medium. The pump signal has a wavelength in the tail of the absorption profile of the gain medium. A plurality of optical signals at different wavelengths are introduced into the gain medium. Stimulated emission within the gain medium clamps the gain of the gain medium.