Abstract:
An indication information sending method includes that a base station generates first indication information and sends the first indication information to a terminal device. The first indication information indicates a power control manner of a first channel, the power control manner being one power control manner in a power control manner set providing transmit power of a signal on the first channel is determined by a terminal device based on a first parameter or according to a rule predefined on the terminal device.
Abstract:
This application provides a system message indication method, an apparatus, and a system. The method may include generating, by a network device, notification information. The notification information may indicate status information of first information, the first information may include at least one bit in a first system message, and a quantity of bits included in the first information may be less than a quantity of bits included in the first system message. The method may also include sending, by the network device, the notification information to a terminal device.
Abstract:
The present invention relates to the field of wireless communications technologies. In a receiving device, a receiving module receives a synchronization signal including a first signal and a second signal. The first signal includes N1 generalized ZC sequences, and the second signal includes N2 generalized ZC sequences. The second signal is used to distinguish different cells or different cell groups. There are at least two generalized ZC sequences with different root indexes in (N1+N2) generalized ZC sequences. A processing module performs a first sliding correlation operation and a second sliding correlation operation on the synchronization signal, and performs symbol timing synchronization according to a relationship between a sliding correlation peak generated when a sliding correlation is performed on the N1 generalized ZC sequences and a sliding correlation peak generated when a sliding correlation is performed on the N2 generalized ZC sequences.
Abstract:
Embodiments of the present application disclose a random access method, a base station, and a terminal device. The terminal device receives random access configuration information from a base station, and determines a random access channel, a base frequency, and at least two frequency hopping intervals according to the random access configuration information. The terminal device sends, over the random access channel, random access signals to the base station using frequencies determined according to the base frequency and the N frequency hopping intervals. The terminal device may send the random access signals over the random access channel to the base station according to the base frequency the frequency hopping intervals and a frequency hopping pattern.
Abstract:
The present disclosure relates to the mobile communications field, and in particular, to a synchronization signal sending method. A network device obtains a first signal after performing discrete Fourier transform (DFT) and orthogonal frequency division multiplexing (OFDM) modulation, or OFDM modulation on a Zadoff-Chu (ZC) sequence whose root index is 1. The network device obtains a second signal after performing DFT and OFDM modulation, or OFDM modulation on a conjugate sequence of the ZC sequence whose root index is 1. The network device generates a synchronization signal, where the synchronization signal includes the first signal and the second signal. The network device sends the synchronization signal to a terminal device.
Abstract:
Embodiments of the present disclosure disclose a synchronization signal sending method, including: determining, by a transmit end device, a first signal, where the transmit end device operates in a serving cell, the first signal includes a first synchronization sequence, the first synchronization sequence is a sequence obtained after a special ZC sequence is cyclically shifted by a first quantity of digits and then dot multiplication or conjugate multiplication is performed on the cyclically shifted special ZC sequence and a characteristic sequence, the special ZC sequence is a ZC sequence with a root index being +1 or −1, and the characteristic sequence and/or the first quantity of digits are/is corresponding to a cell identity of the serving cell. In the synchronization signal sending method provided in the embodiments of the present disclosure, signal synchronization can be implemented in an M2M technology by using the ZC sequence.
Abstract:
The present invention relates to the field of communications technologies, and discloses a data transmission method, user equipment, a base station, and a system. The method includes: selecting, by user equipment (UE), a preamble sequence, and acquiring an uplink time-frequency resource and a downlink time-frequency resource that are corresponding to the preamble sequence; sending the preamble sequence to a base station, so that the base station decodes the preamble sequence, and determines, according to the decoded preamble sequence, the uplink time-frequency resource and the downlink time-frequency resource that are corresponding to the decoded preamble sequence.
Abstract:
A message transmission method and device relating to the field of communications technologies are described that improve an anti-interference capability in message transmission. The method includes generating a scrambling code according to a scrambling code initialization seed, wherein the scrambling code initialization seed meets the following expression: cinit=R·2α7+P·(nfmodk+1)·2b7 and then scrambling a message according to the scrambling code. The method further includes sending the scrambled message to a terminal on a physical downlink shared channel. Because the first time parameter has different values at at least two different moments, scrambling codes determined at the at least two corresponding different moments are different. Therefore, a possibility at which the base station uses a same scrambling code to scramble a same system message repeatedly in a time period is reduced, so that an anti-interference capability in system message transmission is improved.
Abstract:
A message transmission method and device relating to the field of communications technologies are described that improve an anti-interference capability in message transmission. The method includes generating a scrambling code according to a scrambling code initialization seed, wherein the scrambling code initialization seed meets the following expression: cinit=R·2a7+P·(nf mod k+1)·2b7 and then scrambling a message according to the scrambling code. The method further includes sending the scrambled message to a terminal on a physical downlink shared channel. Because the first time parameter has different values at at least two different moments, scrambling codes determined at the at least two corresponding different moments are different. Therefore, a possibility at which the base station uses a same scrambling code to scramble a same system message repeatedly in a time period is reduced, so that an anti-interference capability in system message transmission is improved.
Abstract:
An indication signal configuration method and device are provided, and relate to the field of communications technologies. The method includes: sending, by a network device, first configuration information and second configuration information; sending a first indication signal on a first carrier; and sending a second indication signal on a second carrier, where the first configuration information is used to indicate duration of the first indication signal corresponding to the first carrier, the second configuration information is used to indicate duration of the second indication signal corresponding to the second carrier, the first terminal device is a terminal device that needs to receive the first indication signal, and the second terminal device is a terminal device that needs to receive the second indication signal.