Abstract:
A semantic validation method, applied to a Machine-to-Machine Communications (M2M) system, where the method includes receiving, by an apparatus storing a semantic description resource, an operation request related to a first semantic description resource, including semantic information of the first semantic description resource, an association relationship between the first semantic description resource and another semantic description resource, and a uniform resource identifier (URI) of an ontology referenced by the first semantic description resource, determining that the first semantic description resource is associated with the semantic description resource, sending a semantic validation request message to an apparatus that stores the ontology referenced by the first semantic description resource. Hence, accuracy of a resource and data shared between industries and applications using a public capability of the M2M system can be ensured in a case of no priori knowledge.
Abstract:
The method includes: receiving, by a first managed object device, a first transaction resource creation request that is sent by an application server and includes an identifier of a first to-be-operated resource, a first execution time, and a first to-be-executed operation; receiving, by a second managed object device, a second transaction resource creation request that is sent by the application server and includes an identifier of a second to-be-operated resource, a second execution time, and a second to-be-executed operation, where the first execution time and the second execution time are the same; successfully creating, by the first managed object device, a first transaction resource according to the first transaction resource creation request, and successfully creating, by the second managed device, a second transaction resource according to the second transaction resource creation request.
Abstract:
A mobile network platform creates a device group according to a member device supporting a mobile network multicast communication manner in a Machine-to-Machine Communications (M2M) group, generates an identifier of an external group corresponding to the device group, and requests a service capability exposure function (SCEF) to create the external group according to the identifier of the external group and an external device identifier of the member device supporting the mobile network multicast communication manner. When receiving an access request for the M2M group, the mobile network platform obtains the device group in the M2M group, learns of the corresponding external group, and then requests the SCEF to access the member device in the external group in a multicast communication manner. Hence, an amount of information generated due to interaction between an M2M platform and an M2M device is reduced, while reducing resource overheads.
Abstract:
A method for remotely managing a sensor network topology includes: receiving a device management DM command sent by a device management server, where the DM command acts on a preconstructed management object MO node and the MO node includes a node configured to discover a sensor network topology, a node configured to describe a sensor network topology, or a node configured to modify a sensor network topology; and managing a sensor network according to the DM command, where the management includes discovering the sensor network topology, describing the sensor network topology, or modifying the sensor network topology. By adopting the present invention, remote topology management of a sensor network successive to an M2M gateway can be implemented and the complexity for implementing the management is reduced.
Abstract:
A method for performing an operation on a device resource includes: receiving a first request, which is requests an operation on a device resource, where a destination address of the first request is a mapped address of the device resource on a management apparatus; determining, that the device resource is created on a device corresponding to the device resource; generating a second request for performing an operation on the device resource on the device; and transmitting the second request to the device. A management apparatus for performing an operation on a device resource is also provided. By using the present invention, the complexity for the network application to perform an operation on the device resource can be reduced, and the convenience for the network application to perform an operation on the device resource can be improved. Therefore, extensive application of M2M can further be promoted.
Abstract:
The present invention provides a method, a group server, and a member device for accessing member resources. By using an established mapping relationship between a multicast address and a fanout URI in a group resource, a member resource access request may be sent by multicast to member devices having member resources in the group resource, and the fanout URI is included in the member resource access request, so that the member devices having the member resources execute, according to access paths of the member resources on the member devices as indicated by the fanout URI, an operation indicated by the member resource access request. Therefore, the group server does not need to unicast the access request to each member device, and network overheads are saved.
Abstract:
A network system includes a device management (DM) server and a Machine to Machine (M2M) gateway coupled to the DM server and to a plurality of sensor devices in a sensor network. The DM server is configured to send a DM command. The M2M gateway is configured to: after receiving the DM command, access a topology tree that includes first and second management object (MO) nodes, wherein the first MO node includes an identification and a type of the sensor network and the second MO node describes a characteristic of each of the plurality of sensor devices and a connection relationship of the plurality of sensor devices; according to address information within the DM command, locate at least one of the first and second MO nodes; retrieve information from the located at least one of the first and second MO nodes; and send the retrieved information to the DM server.
Abstract:
A resource acquiring method relates to the field of machine-to-machine communications (M2M) technologies, where the method is used by a consumer application to acquire a producer data resource generated by a producer application, and includes receiving a request message that is used to acquire the producer data resource and that is sent by the consumer application, where the request message carries indication information that is used to instruct to update the producer data resource and return an updated producer data resource, acquiring current moment data from the producer application, updating the producer data resource using the current moment data, and returning the updated producer data resource to the consumer application. Hence, a problem of mismatching between data generated by the producer application and data used by the consumer application is resolved.
Abstract:
Embodiments of the present invention provide a group communication method, system, group server, and group member device. A group server receives notification messages sent by a group member device, aggregates, according to an address of a subscription device, the notification messages destined for the same subscription device, and sends a notification message obtained after aggregation to the subscription device. By aggregating multiple messages sent by the group member device to the subscription device, messages exchanged between the group member device and the subscription device are reduced, thereby reducing communication traffic between the group member device and the subscription device.
Abstract:
In an Internet of things (IoT) service routing method, a mapping relationship between a service feature and a network slice is established on an IoT platform, or a routing policy for determining a network slice based on a service feature is established on an IoT platform, so that the IoT platform can select, based on a service feature of a service message sent by an industry application, an appropriate network slice to send a service message to a terminal device, to meet a plurality of network requirements of the industry application.