摘要:
Adaptive redundancy is implemented (either switched on or off) for a voice over internet protocol (VoIP) packet connection by a basic two step approach. A first step of adaptive redundancy implementation involves monitoring relevant sources or indicators to determine when the need for redundancy (e.g., redundancy coding) may arise. A second step of adaptive redundancy implementation involves the triggering of redundancy implementation events when the monitored sources reach or obtain certain threshold value(s) (threshold). The first and second steps of redundancy implementation can be repeated as needed. Scenarios of adaptive redundancy implementation include both network-initiated implementations (e.g., implementations initiated by a radio access network (RAN)) and mobile-initiated implementations (e.g., implementations initiated by a wireless station).
摘要:
Method and arrangement in a first node, for generating a first and a second correctness target value. The generated correctness target values are used by a power control of the radio signals sent from a second node to be received by the first node. The radio signals are sent over at least a first channel and a second channel. The method comprises establishing a difference between the obtained first quality value of the first channel with a first quality target value of the first channel and generating a first correctness target value. The method also comprises the step of establishing a second difference between the obtained second quality value of the second channel with a second quality target value of the second channel and generating a second correctness target value.
摘要:
Adaptive redundancy is implemented (either switched on or off) for a voice over internet protocol (VoIP) packet connection by a basic two step approach. A first step of adaptive redundancy implementation involves monitoring relevant sources or indicators to determine when the need for redundancy (e.g., redundancy coding) may arise. The monitored sources can be one or more of a transmission buffer(s); a receiving buffer(s); sender and/or receiver statistics. An example of such statistics are the statistics which can be obtained from RTCP protocol, e.g., number of packets/data bytes sent, number of packets/data bytes lost, jitter, etc. A second step of adaptive redundancy implementation involves the triggering of redundancy implementation events when the monitored sources reach or obtain certain threshold value(s) (threshold). Examples of such thresholds (one or more of which may be utilized) include: a number of packets (or bytes of data) in an transmission buffer; a number of lost packets (or bytes of data) calculated from a reception buffer; and, requisite sender and receiver statistics (such as number of packets/data bytes sent and/or being lost has reached a maximum/minimum amount). Examples of the second step implementation events thusly triggered include one or more of the following: (1) dropping or removing a number of packets (or bytes of data) in the transmission buffer, and (2) triggering a signaling message to the sending client and/or receiving client to switch on/off redundancy coding. The first and second steps of redundancy implementation can be repeated as needed. Scenarios of adaptive redundancy implementation include both network-initiated implementations (e.g., implementations initiated by a radio access network (RAN)) and mobile-initiated implementations (e.g., implementations initiated by a wireless station).
摘要:
Method and arrangement in a first node, for generating a first and a second correctness target value. The generated correctness target values are used by a power control of the radio signals sent from a second node to be received by the first node. The radio signals are sent over at least a first channel and a second channel. The method comprises establishing a difference between the obtained first quality value of the first channel with a first quality target value of the first channel and generating a first correctness target value. The method also comprises the step of establishing a second difference between the obtained second quality value of the second channel with a second quality target value of the second channel and generating a second correctness target value.
摘要:
The present invention relates to an apparatus and method for controlling a number of user equipments operating in a cellular network. The method comprises receiving an indication that a rise-over-thermal (RoT) measured in a cell is above a threshold. In response to reception of the indication, it is determined (52) if a user equipment, which is in a Radio Resource Control, RRC, state CELL_DCH and served by the cell, has a low data activity in the uplink According to the method, a user equipment, which is in the RRC state CELL_DCH, is served by the cell and is determined to have a low data activity in the uplink, is triggered (54) to change state to a RRC state CELL_FACH. Thereby the contribution of the user equipment to the RoT of the cell may be reduced and it may be possible to avoid dropping users due to congestion control in case of unacceptably high RoT in the cell.
摘要:
In a method and a system a good spread of users per code is obtained by providing a value related to the current load for each code in the system. The estimated load value can be used by the network to assign the HS-PDSCH code for users in HS-SCCH less operation, and may also be used in the dynamic transmission process, i.e. which codes are to be used by which user during this and future TTIs. If one code is over a given utilization threshold, where the threshold is set in order to avoid code blocking of VoIP users, enough users can be re-assigned to a different code. In the case that all of the current codes used in the HS-SCCH less operation model are over the utilization threshold, yet another code can be made available for HS-SCCH less operation.
摘要:
The present invention relates to an apparatus and method for controlling a number of user equipments operating in a cellular network. The method comprises receiving an indication that a rise-over-thermal (RoT) measured in a cell is above a threshold. In response to reception of the indication, it is determined (52) if a user equipment, which is in a Radio Resource Control, RRC, state CELL_DCH and served by the cell, has a low data activity in the uplink According to the method, a user equipment, which is in the RRC state CELL_DCH, is served by the cell and is determined to have a low data activity in the uplink, is triggered (54) to change state to a RRC state CELL_FACH. Thereby the contribution of the user equipment to the RoT of the cell may be reduced and it may be possible to avoid dropping users due to congestion control in case of unacceptably high RoT in the cell.
摘要:
A method of operating a base station node (21) comprises obtaining an indication of degradation of a radio link connection between the base station node and the user equipment unit (UE) which is carried by the a high speed packet channel (HSDPA). In accordance with the distance indication, the transmission priority for the radio link connection is modified. Preferably the indication of degradation is a distance indication of distance of a user equipment unit (23) involved in the radio link connection from the base station node (21). The transmission priority can be modified for one or both of downlink and uplink transmissions for the user equipment unit (UE). Preferably the transmission priority is modified for the radio link connection, e.g., for the user equipment unit (UE), as a function of the indication.
摘要:
Control of transitions between radio resource control, RRC, states for a wireless terminal in a radio access network is described. The radio resource control states comprise a first state and a second state. A calculation (702) is made of a prediction of an inter-arrival time, ITB, between data bursts to be handled. A detection (704) that a data burst is to be handled is done and then it is decided (706) whether to make a transition from the first state to the second state essentially immediately and upon termination of handling of the detected data burst if the prediction of the ITB is greater than a current ITB threshold. The current ITB threshold is a time interval that is depending on a function of RRC state transition costs and the fractional distribution of true predictions and false predictions of a plurality of predicted ITB values in relation to recorded ITB values. Then, in accordance with the decision, the wireless terminal is directed (708) either to remain in the first state or switch to the second state.
摘要:
Control of transitions between radio resource control, RRC, states for a wireless terminal in a radio access network is described. The radio resource control states comprise a first state and a second state. A calculation (702) is made of a prediction of an inter-arrival time, ITB, between data bursts to be handled. A detection (704) that a data burst is to be handled is done and then it is decided (706) whether to make a transition from the first state to the second state essentially immediately and upon termination of handling of the detected data burst if the prediction of the ITB is greater than a current ITB threshold. The current ITB threshold is a time interval that is depending on a function of RRC state transition costs and the fractional distribution of true predictions and false predictions of a plurality of predicted ITB values in relation to recorded ITB values. Then, in accordance with the decision, the wireless terminal is directed (708) either to remain in the first state or switch to the second state.