摘要:
A neutralization system for controlling the pH of the washwater used to clean and maintain polyacrylic bound glass forming equipment is provided. The neutralization system introduces a base solution to a washwater solution when the pH of the washwater solution contained in a closed loop washwater recovery system and in a washwater tank holding the washwater solution is determined to be below approximately 8.0. Maintaining the pH of the washwater solution reduces the corrosion rate of the glass fiber forming equipment that is typically associated with acidic binders. In a second embodiment of the invention, a closed-loop hoodwall reclaim washwater recovery system utilized in addition to the washwater neutralization system that allows for the recovery and reuse of a polycarboxylic acid binder with a minimal amount of base solution. The closed-loop hoodwall reclaim washwater system is not connected to the closed-loop washwater neutralization system.
摘要:
A neutralization system for controlling the pH of the washwater used to clean and maintain polyacrylic bound glass forming equipment. The neutralization system introduces a base solution to a washwater solution when the pH of the washwater solution contained in a closed loop washwater recovery system falls below approximately 8.0, thereby substantially reducing the corrosion rate of the components of the equipment associated with acidic polyacrylic acid binder and washwater solution. A closed-loop hoodwall washwater recovery system may also be introduced in addition to the neutralization system that allows for the recovery and reuse of polyacrylic acid binder with a minimal amount of base solution, thereby minimizing degradation of insulation properties of polyacylic acid bound glass fiber products.
摘要:
A neutralization system for controlling the pH of the washwater used to clean and maintain polyacrylic bound glass forming equipment. The neutralization system introduces a base solution to a washwater solution when the pH of the washwater solution contained in a closed loop washwater recovery system falls below about 8.5, thereby substantially reducing the corrosion rate of the components of the equipment associated with acidic polyacrylic acid binder, maleic acid cobinder or maleic anhydride cobinder and washwater solution. A closed-loop hoodwall washwater recovery system may also be introduced in addition to the neutralization system that allows for the recovery and reuse of polyacrylic acid binder and maleic acid cobinder or maleic anhydride cobinder with a minimal amount of base solution, thereby minimizing degradation of insulation properties of polyacylic acid bound glass fiber products.
摘要:
A recovery system recycles the washwater used to clean excess binder and debris from the production components, including a forming hoodwall constructed of non-corrosive materials, for manufacturing fiberglass insulation. A separate closed-loop recovery system is provided for the forming hoodwall in which the binder-containing washwater is screened and then recycled back to the forming hoodwall without further chemical treatment to change the pH level. A binder reclamation system is coupled to the hoodwall washwater recovery system to divert the low pH washwater when the supply of binder needs replenished at the forming hoodwall. The binder reclamation system introduces an acid solution to the cleaned washwater to lower the pH from about 2.5 to about 3.5. The other production components share a bulk washwater recovery system in which a base solution is introduced to raise the pH to approximately 8 or above to reduce corrosion in the other production components.
摘要:
A formaldehyde free co-binder solution formed by using a polyol to crosslink polycarboxylic acid and a polyacid monomer is provided. In forming the co-binder solution, the polyacid monomer and the polyol are mixed in any conventional device with heat and agitation for a period of time sufficient for the chemicals to react and form a reaction product. The resultant product is then admixed with polycarboxylic acid to form a co-binder solution. In a preferred embodiment, the polyacid is maleic anhydride and the polyol is triethanolamine.
摘要:
The present invention provides a binder composition comprising a low molecular weight polycarboxylic acid, such as maleic anhydride, and a low molecular weight poly alcohol, such as polyvinyl alcohol, that exhibits improved cure performance with reduced emissions without sacrificing the performance of the final product or complication the manufacturing process. The binder composition may also incorporate a cure catalyst or accelerant such as sodium hypophosphite.
摘要:
Dispersions of reactive polysiloxanes are applied to fibrous products, such as construction panels to provide improved properties, like better resistance to staining and discoloration and better adhesion of facer layers The reactive polysiloxane may be applied directly to the fibrous product or mixed into binder compositions prior to application; and may be applied substantially uniformly or non-uniformly. The construction panels may form wall and/or ceiling panels. The reactive polysiloxane may include polysiloxanes functionalized with any of hydrogen, amino, hydroxyl or carboxyl reactive functionalities.
摘要:
An aqueous binder composition is provided that includes a protein-containing biomass and a pH adjuster. Optionally, a crosslinking agent and/or a moisture resistant agent may be included in the binder composition. The protein-containing biomass is natural in origin and may be derived from plant or animal sources. The pH adjuster is used to adjust the pH of the binder to a desired pH and lower the viscosity of the protein-based biomass. In addition, the pH adjuster may act as a crosslinking agent. The crosslinking agent may be any compound suitable for crosslinking the protein-containing biomass and reacting with the moisture resistant agent, when the moisture resistant agent is present in the binder. In addition, the binder has a light color after it has been cured. The environmentally friendly, formaldehyde-free binder may be used in the formation of insulation materials and non-woven chopped strand mats.
摘要:
The present invention provides a variety of extended polyacrylic acid based binder compositions comprising a low molecular weight polyacrylic acid (typically hypophosphite or sulfite terminated), a crosslinking agent (such as triethanolamine or glycerol) and one or more water soluble materials, such as lignin, low molecular weight starch and soybean protein. The extended binder composition of the present invention provides a lower cost binder composition without degrading the performance and may be selected to alter one or more characteristics of the basic binder composition such binder wetting, emulsion compatibility, dust suppression and wash water flow properties.
摘要:
An aqueous binder composition is provided that includes a modified starch and a silane coupling agent, and optionally, a crosslinking agent. The starch from which the modified starch is derived is natural in origin, biorenewable, and is derived from plant sources. The modified starch has been chemically modified from its natural form and may have a degree of polymerization from about 20 to about 4000. Additionally, the modified starches have a low viscosity and cure at moderate temperatures. Advantageously, the modified starches are water dispersible and have excellent resistance to water after curing. In addition, the binder has a light color after being cured. The crosslinking agent may be any compound suitable for crosslinking the starch based compound. In exemplary embodiments, the silane coupling agent is an aminosilane. The environmentally friendly, biorenewable binder may be used in the formation of insulation materials and non-woven chopped strand mats.