Abstract:
An apparatus and a method for automatically joining components of photovoltaic elements are disclosed. The apparatus includes: a) at least two manufacturing lines and at least two assembly bridges for joining the substrates, films and glass panes, b) a stacking device for film feeding and a conveyor belt for feeding the glass panes, c) devices for centering and suctioning the films and the glass plates, d) devices for transporting and fixing the film transport frame and the glass transport frame e) devices for lowering the films and the glass plates from the respective transport frames, and f) devices for further transport.
Abstract:
Disclosed are a device and a method for picking up glass plates from at least one production line in order to convey said glass plates on to a storage housing or a coating plant. An embodiment of the device includes: a) a linearly movable, vertically installed main lifting column with a lifting rake that can be vertically moved therealong; b) a horizontal drive unit for the lifting rake; c) at least one sensor which is mounted on a fork of the lifting rake and is used for detecting the availability of the targeted storage place of a glass plate; d) at least one sensor which is mounted on a fork of the lifting rake and is used for detecting if a glass plate is located on the lifting rake; e) at least one sensor that is mounted on a fork of the lifting rake and is used for detecting cracks in a glass plate.
Abstract:
Method and device for loading a container with products which are made up of individual thin sheets of glass (1) of a large surface area or with individual sheets of glass (1), in particular photovoltaic modules, TFT screens or component parts thereof, comprising the following features: a) means for respectively bringing into place individual sheets of glass (1) or products made up of various sheets of glass (1), b) a vertical adjuster with a sliding carriage (16) and supporting forks (12), c) a transverse transporting device (18) for loading, d) a device for transferring force from the transverse transporting device (18) to a transporting belt (8) respectively of the container.
Abstract:
Method and device for loading a container with products which are made up of individual thin sheets of glass (1) of a large surface area or with individual sheets of glass (1), in particular photovoltaic modules, TFT screens or component parts thereof, comprising the following features: a) means for respectively bringing into place individual sheets of glass (1) or products made up of various sheets of glass (1), b) a vertical adjuster with a sliding carriage (16) and supporting forks (12), c) a transverse transporting device (18) for loading, d) a device for transferring force from the transverse transporting device (18) to a transporting belt (8) respectively of the container.
Abstract:
An apparatus and a method for automatically joining components of photovoltaic elements are disclosed. The apparatus includes: a) at least two manufacturing lines and at least two assembly bridges for joining the substrates, films and glass panes, b) a stacking device for film feeding and a conveyor belt for feeding the glass panes, c) devices for centering and suctioning the films and the glass plates, d) devices for transporting and fixing the film transport frame and the glass transport frame e) devices for lowering the films and the glass plates from the respective transport frames, and f) devices for further transport.
Abstract:
Disclosed are a method and a device for conveying large-size thin glass plates in clean-room conditions for the large-scale production of electro-optical products. In one embodiment the device includes a) conveying elements for supplying glass plates; b) processing elements for processing glass plates; c) production lines for combining individual production processes; d) containers that can be loaded with glass plates from two opposite sides; e) carriages for transporting the containers, said carriages having rail wheels while supporting transverse rails for guiding rolls in order to move the containers; f) means for driving the carriages and transversely moving the containers with the help of joint driving motors.
Abstract:
Disclosed are a device and a method for picking up glass plates from at least one production line in order to convey said glass plates on to a storage housing or a coating plant. An embodiment of the device includes: a) a linearly movable, vertically installed main lifting column with a lifting rake that can be vertically moved therealong; b) a horizontal drive unit for the lifting rake; c) at least one sensor which is mounted on a fork of the lifting rake and is used for detecting the availability of the targeted storage place of a glass plate; d) at least one sensor which is mounted on a fork of the lifting rake and is used for detecting if a glass plate is located on the lifting rake; e) at least one sensor that is mounted on a fork of the lifting rake and is used for detecting cracks in a glass plate.
Abstract:
Disclosed are a method and a device for conveying large-size thin glass plates in clean-room conditions for the large-scale production of electro-optical products. In one embodiment the device includes a) conveying elements for supplying glass plates; b) processing elements for processing glass plates; c) production lines for combining individual production processes; d) containers that can be loaded with glass plates from two opposite sides; e) carriages for transporting the containers, said carriages having rail wheels while supporting transverse rails for guiding rolls in order to move the containers; f) means for driving the carriages and transversely moving the containers with the help of joint driving motors.