摘要:
A network controller in a communication device may be operable to provide pass-through communication of local host-management traffic between a local host and a management controller within the communication device, wherein the local host may be operable to utilize its network processing resources during communication of the local host-management traffic. The network controller may use packet filtering to provide the pass-through communication, wherein the network controller may utilize a plurality filtering rules during filtering of packets received in the network controller. The filtering rules may specify packet processing and/or forwarding actions by said network controller based on one or more specified conditions. The specified conditions may based on one or more match criteria; wherein the match criteria comprising source address, destination address, and/or traffic type data in the received packets. Address learning mechanisms may be used in the network controller to enable configuring and/or performing packet filtering transparently.
摘要:
A network interface device includes a bus interface that communicates over a bus with a host processor and memory, and a network interface, including at least first and second physical ports, which are coupled to send and receive data packets carrying data over a packet network. A protocol processor includes a single transmit processing pipeline and a single receive processing pipeline, which are coupled between the bus interface and the network interface so as to convey the data between both of the first and second physical ports of the network interface and the memory via the bus interface while performing protocol offload processing on the data packets.
摘要:
Systems and methods that network interface in a multiple network environment are provided. In one embodiment, the system includes, for example, a network connector, a processor, a peripheral component interface (PCI) bridge and a unified driver. The processor may be coupled to the network connector and to the PCI bridge. The processor may be adapted, for example, to process a plurality of different types of network traffic. The unified driver may be coupled to the PCI bridge and may be adapted to provide drivers associated with the plurality of different types of network traffic.
摘要:
Systems and methods for network interfacing may include a communication data center with a first tier, a second tier and a third tier. The first tier may include a first server with a first single integrated convergent network controller chip. The second server may include a second server with a second single integrated convergent network controller chip. The third tier may include a third server with a third single integrated convergent network controller chip. The second server may be coupled to the first server via a single fabric with a single connector. The third server may be coupled to the second server via the single fabric with the single connector. The respective first, second and third server, each processes a plurality of different traffic types concurrently via the respective first, second and third single integrated convergent network chip over the single fabric that is coupled to the single connector.
摘要:
A network adapter and corresponding method for its use are disclosed. The network adapter has an operational mode that allows a host CPU to offload transmission of a block of data to the adapter. The adapter segments the block into fragments, and builds a data packet for each fragment. The adapter transmits these packets with an adapter-implemented flow control. This flow control uses: a context engine that tracks flow control variables for a “context” established for the block; a context memory for storing the variables; and a receive filter that updates flow control information for the block based on ACK packets received from the remote endpoint receiving the data packets. Because the network adapter implements flow control for data blocks that the network adapter segments, intermediate ACK packets corresponding to that block can be intercepted by the adapter, before they pass to the host, conserving host resources. An added advantage is that the host CPU can offload data blocks larger than the remote endpoint's receive window size, since the adapter can follow the transmit window and transmit packets at appropriate intervals. This further decreases load on the host CPU, decreases latency, and improves bandwidth utilization.
摘要:
A system for processing packets is disclosed and may including a network interface card (NIC). The NIC may include a TCP enabled Ethernet controller (TEEC). The TEEC may include an internal elastic buffer. The TEEC may process received incoming TCP packets once and may temporarily buffer at least a portion of the incoming TCP packets in the internal elastic buffer. The processing may occur without reassembly or retransmission. The internal elastic buffer may include a receive internal elastic buffer and a transmit internal elastic buffer. The receive internal elastic buffer may temporarily buffer at least a portion of the received incoming TCP packets. The transmit internal elastic buffer may temporarily buffer at least a portion of TCP packets to be transmitted. The TEEC may place at least a portion of the received incoming TCP packets data into at least a portion of a host memory.
摘要:
Systems and methods for network interfacing may include a communication data center with a first tier, a second tier and a third tier. The first tier may include a first server with a first single integrated convergent network controller chip. The second server may include a second server with a second single integrated convergent network controller chip. The third tier may include a third server with a third single integrated convergent network controller chip. The second server may be coupled to the first server via a single fabric with a single connector. The third server may be coupled to the second server via the single fabric with the single connector. The respective first, second and third server, each processes a plurality of different traffic types concurrently via the respective first, second and third single integrated convergent network chip over the single fabric that is coupled to the single connector.
摘要:
Aspects of the invention may include a dual port Ethernet controller having a bus interface, a first Ethernet controller coupled to the bus interface such as a PCI bus interface and a second Ethernet controller coupled to the bus interface. The first Ethernet controller, second Ethernet controller and bus interface are integrated within a single chip. The dual port Ethernet controller may also include an arbiter, which is coupled to the first Ethernet controller, the second Ethernet controller and the bus interface. A plurality of shared resources may be coupled to one or more of the first Ethernet controller, the second Ethernet controller and the arbiter. The shared resources may include, but is not limited to, a non-volatile memory 304 and a general purpose input/out interface.
摘要:
A method for processing of packetized data is disclosed and includes allocating a plurality of partitions of a single context memory for handling data for a corresponding plurality of network protocol connections. Data for at least one of the plurality of network protocol connections may be processed utilizing a corresponding at least one of the plurality of partitions of the single context memory. The at least one of the plurality of partitions of the single context memory may be de-allocated, when the corresponding at least one of the plurality of network protocol connections is terminated. The data for the at least one of the plurality of network protocol connections may be received. The data may be associated with a single network protocol or with a plurality of network protocols. The data for the at least one of the plurality of network protocol connections includes context data.
摘要:
Systems and methods for network interfacing may include a communication data center with a first tier, a second tier and a third tier. The first tier may include a first server with a first single integrated convergent network controller chip. The second server may include a second server with a second single integrated convergent network controller chip. The third tier may include a third server with a third single integrated convergent network controller chip. The second server may be coupled to the first server via a single fabric with a single connector. The third server may be coupled to the second server via the single fabric with the single connector. The respective first, second and third server, each processes a plurality of different traffic types concurrently via the respective first, second and third single integrated convergent network chip over the single fabric that is coupled to the single connector.