摘要:
The present invention relates to frequency hopping in wireless communication systems utilizing single-carriers with varying bandwidth. Frequency hopping is made possible by dividing the available bandwidth, associated to the available frequency spectrum, in a leveled structure, a bandwidth tree. By the use of a frequency hopping tree, which has the same structure as the bandwidth tree and wherein each leaf represent a hopping sequence, a frequency hopping scheme is determined. Orthogonality in-between the frequency hopping schemes for different users is ensured by letting a users hopping sequence value at a level n, be dependent on the hopping sequence value associated to the same branch structure on the adjacent level closer to the root of the tree, n−1, and an input sequence associated with the level n.
摘要:
Available bandwidth is divided into multiple sub-channels, and respective sub-bands containing one or more of these sub-channels are allocated to one or more users. A first frequency allocation is determined, and mathematical operators are used to determine at least one further frequency allocation from the first frequency allocation. A frequency hopping sequence is then determined, including the first frequency allocation, and the or each further frequency allocation. A network node may perform the allocation method, and a user equipment may operate using the allocated bandwidth.
摘要:
Available bandwidth is divided into multiple sub-channels, and respective sub-bands containing one or more of these sub-channels are allocated to one or more users. A first frequency allocation is determined, and mathematical operators are used to determine at least one further frequency allocation from the first frequency allocation. A frequency hopping sequence is then determined, including the first frequency allocation, and the or each further frequency allocation. A network node may perform the allocation method, and a user equipment may operate using the allocated bandwidth.
摘要:
Available bandwidth is divided into multiple sub-channels, and respective sub-bands containing one or more of these sub-channels are allocated to one or more users. A first frequency allocation is determined, and mathematical operators are used to determine at least one further frequency allocation from the first frequency allocation. A frequency hopping sequence is then determined, including the first frequency allocation, and the or each further frequency allocation. A network node may perform the allocation method, and a user equipment may operate using the allocated bandwidth.
摘要:
The present invention relates to frequency hopping in wireless communication systems utilizing single-carriers with varying bandwidth. Frequency hopping is made possible by dividing the available bandwidth, associated to the available frequency spectrum, in a levelled structure, a bandwidth tree. By the use of a frequency hopping tree, which has the same structure as the bandwidth tree and wherein each leaf represent a hopping sequence, a frequency hopping scheme is determined. Orthogonality in-between the frequency hopping schemes for different users is ensured by letting a users hopping sequence value at a level n, be dependent on the hopping sequence value associated to the same branch structure on the adjacent level closer to the root of the tree, n−1, and an input sequence associated with the level n.
摘要:
The invention relates to a radio base station (102) and method in a radio base station of a cellular communications system (100) for controlling self-interference. The radio base station (102) supports communication with a user equipment (101) using multiple uplink and multiple downlink carriers (104a, 104b, 105a, 105b). The method comprises detecting a degraded downlink performance on a downlink carrier (105a) due to self-interference by determining that a set of predefined conditions applies. The method further comprises executing, in response to detection of the degraded downlink performance, an action to reduce self-interference between the uplink and downlink carriers (104a, 104b, 105a, 105b). The action is one of: uplink scheduling to reduce self-interference, deactivation of a secondary uplink carrier (14a, 104b), deactivation of a secondary downlink carrier (105a, 105b), and initiation of carrier reconfiguration to reduce self-interference. Accordingly, benefits of using multi-carrier operation may be balanced against a possible associated drawback of degraded downlink performance due to self-interference.
摘要:
A frequency hopping sequence generator system (40) for use in a radio telecommunications system utilizes variable frequency offsets (FO) to determine a frequency hopping sequence for use in communication between a mobile station and a network node. The frequency hopping sequence generator comprises a frequency offset hopping generator (42) which chooses the variable frequency offsets so that the frequency hopping sequence provides intra-cell interference diversity. For each mobile station, the frequency offset hopping generator determines a frequency offset index (FOI) which is mapped to one of plural possible frequency offsets (FO). The frequency offset index (and thus the corresponding frequency offset) is determined to provide the frequency hopping sequence with both interference diversity and orthogonality. The frequency offset index has a first component and a second component. The first component of the frequency offset index is an inter-cell component that provides, e.g., collision diversity between FO hopping sequences that are not orthogonal. The second component is an intra-cell component that provides orthogonal (non-colliding) sequences with a variable difference between two sequences. The intra-cell component sub-generator can operate in either a “short sequences” mode or a “long sequences” mode. The long sequences mode renders adjacent frequency collision rates between two sequences with equal FOHSN independent of the choice of the two different FOSEEDs selected. On the other hand, the short sequences mode yields higher collision rates between certain pairs than between other pairs.
摘要:
The present invention relates to a method and an arrangement for optimizing radio resource utilizations when scheduling data transmissions between a radio base station (15) and one or more user equipments (18) on a radio channel over a radio interface in a communication network comprising a plurality of said radio base stations (15) serving cells between which said user equipments (18) are moving. Firstly information on channel quality of said radio channel is obtained. Also, information on the traffic per user within the cell is obtained. Then, the information on channel quality and said traffic information are combined and the data transmission is scheduled based on the combination.
摘要:
The present invention relates to a method and apparatus for estimating a received signal power of a first transmission channel at a receiving node in a communications system wherein a received signal comprises information transmitted by a transmitting node over at least two transmission channels. The received signal power of a second of the at least two transmission channels is measured, and together with an estimate of the relationship between the transmission power of the second transmission channel and the transmission power of the first transmission channel; the measurement of the received signal power is used in estimating the received signal power of the first transmission channel.
摘要:
In a telecommunications system that employs frequency hopping techniques, network performance can be significantly improved by taking into consideration the level of interaction (e.g., the collision rate) between frequency hopping sequences, when allocating the frequency hopping sequences throughout the network. In a cellular network, this may be accomplished by deriving a network performance measure as a function of a current allocation of frequency hopping sequences for a number of cells and as a function of an expected collision rate (between the frequency hopping sequences) that appear for the current allocation. The frequency hopping sequences are then re-allocated amongst one or more cells until network performance is optimized. The allocation of frequency hopping sequences that results in optimized network performance may then be used for assigning frequency hopping sequences to new or existing connections (e.g., cellular calls) within a corresponding cell.