摘要:
A method of making a semiconductor radiation detector includes the steps of providing a semiconductor substrate having front and rear major opposing surfaces, forming a solder mask layer over the rear major surface, patterning the solder mask layer into a plurality of pixel separation regions, and after the step of patterning the solder mask layer, forming anode pixels over the rear major surface. Each anode pixel is formed between adjacent pixel-separation regions and a cathode electrode is located over the front major surface of the substrate. The solder mask can be used as a permanent photoresist in developing patterned electrodes on CdZnTe/CdTe devices as well as a permanent reliability protection coating. The method is very robust and ensures long-term reliability, outstanding detector performance, and may be used in applications such as medical imaging and for demanding other highly spectroscopic applications.
摘要:
A radiation detector includes a semiconductor substrate having opposing front and rear surfaces, a cathode electrode located on the front surface of the semiconductor substrate configured so as to receive radiation, and a plurality of anode electrodes formed on the rear surface of said semiconductor substrate. A work function of the cathode electrode material contacting the front surface of the semiconductor substrate is lower than a work function of the anode electrode material contacting the rear surface of the semiconductor substrate.
摘要:
A method of making a semiconductor radiation detector includes the steps of providing a semiconductor substrate having front and rear major opposing surfaces, forming a solder mask layer over the rear major surface, patterning the solder mask layer into a plurality of pixel separation regions, and after the step of patterning the solder mask layer, forming anode pixels over the rear major surface. Each anode pixel is formed between adjacent pixel-separation regions and a cathode electrode is located over the front major surface of the substrate. The solder mask can be used as a permanent photoresist in developing patterned electrodes on CdZnTe/CdTe devices as well as a permanent reliability protection coating. The method is very robust and ensures long-term reliability, outstanding detector performance, and may be used in applications such as medical imaging and for demanding other highly spectroscopic applications.
摘要:
A radiation detector includes a semiconductor substrate which contains front and rear major surfaces and at least one side surface, a guard ring and a plurality of anode electrode pixels located over the rear surface of the semiconductor substrate, where each anode electrode pixel is formed between adjacent pixel separation regions, a side insulating layer formed on the at least one side surface of the semiconductor substrate, a cathode electrode located over the front major surface of the semiconductor substrate, and an electrically conductive cathode extension formed over at least a portion of side insulating layer, where the cathode extension contacts an edge of the cathode electrode. Further embodiments include various methods of making such semiconductor radiation detector.