摘要:
A stamping foil for forming printed circuit patterns on insulating or poorly conductive substrates comprising an electrically conductive layer made of a highly conductive metal, such as copper, which is endowed with a sufficiently low shear strength, even in thicknesses of 10 microns or more, to permit easy and sharp separation of the activated (imprinted) and non-activated portions of the foil. Such a low shear strength may be achieved with fibrous or fibrous-granular crystallite structures, wherein the fibers are oriented approximately at right angles to the surfaces of the foil, and, in addition, by doping agents containing carbon, nitrogen and sulfur. The foil may comprise a bonding layer for bonding the conductive layer to a substrate, or such a bonding layer may be applied to the surface of the conductive layer before the stamping operation. The conductive layer may be either self-supporting, or it may adhere to a carrier tape through an intermediary separating layer. In the latter case, the bonding and separating layers become activated when compressed by a stamping die or stereotype, whereby the conductive layer becomes bonded to the substrate and separated from the carrier tape in the activated areas. The activated and non-activated portions of the foil are then separable by pulling the carrier tape away from the substrate.
摘要:
A stream of gas is forced through the pores of an object and either the gas itself or a component thereof is electrically activated through partial brush discharge such that reaction products will modify the surface of the pore walls as the gas flows through. The method avoids vacuum deposition methods as well as wet-coating methods and is applicable for either hydrophobizing or hydrophilizing objects and for improving, for example, biochemical activities or compatability of the object with a liquid to be filtered later.
摘要:
The invention relates to a sensor with two electrodes and a non-conductingiaphragm arranged between them. The electrodes have an insulating coating, which preferably comprises a metal oxide, mixed metal oxide, metal nitride, inorganic insulating material or fluorocarbon and the non-conducting diaphragm a metal oxide, mixed metal oxide, inorganic or organic insulating materials. As a function of the intended use, the diaphragm and electrode coating are porous (for measurements in non-aqueous liquids) or non-porous (for measurements of aqueous liquids). It is also directed at a process for measuring the characteristics of a liquid with the sensor according to the invention, as well as to the use of the sensor for the continuous or discontinuous investigation of liquids.