Abstract:
A display device includes a light emitting functional layer disposed between a first and second substrates; a first pixel which emits light to the second substrate and has a first pixel electrode disposed between the light emitting functional layer and the first substrate, a second electrode disposed between the light emitting functional layer and the second substrate, and a first reflecting layer disposed between the first pixel electrode and the first substrate; a second pixel which emits light to the first substrate side and has a second pixel electrode disposed between the light emitting functional layer and the first substrate, a second electrode disposed between the light emitting functional layer and the second substrate, and a second reflecting layer disposed between the second electrode and the second substrate; and a driving element which drives the first and second pixel electrodes is disposed above first substrate.
Abstract:
A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; and first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view, wherein a distance between the magnetoresistive element and the second shield film is set to 8 to 100 μm.
Abstract:
A method for producing a light-emitting device including an acceptor substrate as a base includes ejecting functional liquids containing organic functional materials into target sites on a donor substrate; removing a solvent from the functional liquids to form organic functional layers containing the organic functional materials in the target sites; disposing the donor substrate such that the organic functional layers are positioned opposite the acceptor substrate; and transferring the organic functional layers onto the acceptor substrate by heating the organic functional layers under a reduced pressure with the donor substrate disposed opposite the acceptor substrate.
Abstract:
A light-emitting device includes a plurality of pixels constituting a screen, each of the plurality of pixels including four subpixels, which are a red subpixel, a green subpixel, a blue subpixel, and a white subpixel. The red subpixel has a light-emitting layer formed of a red-light-emitting material that emits red light and extending along the screen, and a color filter provided above the light-emitting layer to transmit red light. The green subpixel has a light-emitting layer formed of a white-light-emitting material that emits white light and extending along the screen, and a color filter provided above the light-emitting layer to transmit green light. The blue subpixel has a light-emitting layer formed of a blue-light-emitting material that emits blue light and extending along the screen, and a color filter provided above the light-emitting layer to transmit blue light. The white subpixel has a light-emitting layer formed of the white-light-emitting material and extending along the screen.
Abstract:
A magnetic balance type current sensor includes a magnetoresistance effect element whose resistance value changes owing to the application of an induction magnetic field from a current to be measured; a feedback coil disposed in the vicinity of the magnetoresistance effect element and generating a cancelling magnetic field cancelling out the induction magnetic field; a magnetic field detection bridge circuit including two outputs causing a voltage difference corresponding to the induction magnetic field to occur; and a magnetic shield attenuating the induction magnetic field and enhancing the cancelling magnetic field, wherein, on the basis of the current flowing through the feedback coil at the time of an equilibrium state in which the induction magnetic field and the cancelling magnetic field are cancelled out, the current to be measured is measured, wherein the feedback coil, the magnetic shield, and the magnetic field detection bridge circuit are formed on a same substrate.
Abstract:
A magnetic-balance-system current sensor includes: a magnetoresistive element, a resistance value of the magnetoresistive element being changed by applying an induction magnetic field generated by a measurement target current; magnetic cores disposed near the magnetoresistive element; a feedback coil disposed near the magnetoresistive element and configured to generate a cancelling magnetic field that cancels out the induction magnetic field; and a magnetic-field detecting bridge circuit having two outputs. The measurement target current is measured on the basis of a current flowing through the feedback coil when the induction magnetic field and the induction magnetic field and the cancelling magnetic field cancel each other out. The feedback coil, the magnetic cores, and the magnetic-field detecting bridge circuit are formed on a same substrate. The feedback coil is of a spiral type, and the magnetic cores are provided above and below the feedback coil.
Abstract:
A light-emitting device includes a light-reflecting layer, a first electrode disposed on or above the light-reflecting layer, a semi-transparent reflective second electrode, a light-emitting function layer disposed between the first electrode and the second electrode, and an electron-injection layer disposed between the light-emitting function layer and the second electrode. The second electrode is made of an Ag alloy having an Ag content of from 50% by atoms to 98% by atoms.
Abstract:
A display device includes a substrate, a plurality of light-emitting elements formed on the substrate, and a reflective layer disposed between the substrate and the light-emitting elements and reflecting the light emitted from the light-emitting elements. The light-emitting elements each include a transparent layer that is in contact with the reflective layer, a light-emitting layer disposed on the upper surface of the transparent layer, and an electrode layer with transparency disposed on a side of the light-emitting layer opposite the side on which the reflective layer lies. The distance between the reflective layer and the electrode layer in each of the light-emitting elements is set such that a light component of a specific color in the light emitted from the corresponding light-emitting layer is enhanced by interference and emitted from the electrode layer. The light-emitting elements include at least first light-emitting elements and second light-emitting elements in which blue and red light components in the light emitted from the light-emitting layers are simultaneously enhanced and emitted from the electrode layers.
Abstract:
Magnetoresistive effect elements R1 to R4 are a TMR element or CPP-GMR element. A multilayer film forming the magnetoresistive effect elements is formed to have a width dimension T1 and a length dimension L1 perpendicular to the width dimension T1. The length dimension L1 is longer than the width dimension T1. The width dimension of magnetic field generators of the coil is T2. The multilayer film 31 is positioned within the width dimension T3 of 60% in total of 30% each to the width dimension T2 of the magnetic field generators 3 and 4 of the coil in the direction towards both sides from the center of the width dimension T2 when seen in a plan view.
Abstract:
A magnetic coupling type isolator includes: a magnetic field generator for generating an external magnetic field by an input signal; a magnetoresistive element for detecting the external magnetic field and converting the detected magnetic field into an electric signal, the magnetoresistive element being electrically insulated from the magnetic field generator and positioned in a location capable of being magnetically coupled so as to be overlapped with the magnetic field generator as seen in a top plan view; first and second shield films overlapped with the magnetic field generator and the magnetoresistive element as seen in a top plan view; and a third shield film disposed to surround the magnetoresistive element.