Abstract:
A light scanning apparatus includes a mirror supporting portion having a mirror on a front surface, an actuator configured to driving the mirror supporting portion, a fixed frame disposed around the mirror supporting portion and the actuator, and at least one rib disposed on a back surface side of the mirror supporting portion or the actuator, wherein the rib includes a straight portion and a contact portion having a width wider than a width of the straight portion.
Abstract:
The present invention provides a novel heterocyclic compound. A heterocyclic compound represented by general formula (1) wherein, R1 and R2, each independently represent hydrogen; a phenyl lower alkyl group that may have a substituent(s) selected from the group consisting of a lower alkyl group and the like on a benzene ring and/or a lower alkyl group; or a cyclo C3-C8 alkyl lower alkyl group; or the like; R3 represents a lower alkynyl group or the like; R4 represents a phenyl group that may have a substituent(s) selected from the group consisting of a 1,3,4-oxadiazolyl group that may have e.g., halogen or a heterocyclic group selected from pyridyl group and the like; the heterocyclic group may have at least one substituent(s) selected from a lower alkoxy group and the like or a salt thereof.
Abstract:
Methods of treating disorders using compounds that modulate striatal-enriched tyrosine phosphatase (STEP) are described herein. Exemplary disorders include schizophrenia and cognitive deficit.
Abstract:
Compounds, pharmaceutical compositions containing the compounds, and methods of using the compounds to treat a disorder, e.g., schizophrenia and cognitive deficit, in a subject are described herein. The compounds disclosed herein include quinoline and quinazoline-containing compounds that modulate striatal-enriched tyrosine phosphatase (STEP) activity.
Abstract:
A magnetic balance type current sensor includes a magnetoresistance effect element whose resistance value changes owing to the application of an induction magnetic field from a current to be measured; a feedback coil disposed in the vicinity of the magnetoresistance effect element and generating a cancelling magnetic field cancelling out the induction magnetic field; a magnetic field detection bridge circuit including two outputs causing a voltage difference corresponding to the induction magnetic field to occur; and a magnetic shield attenuating the induction magnetic field and enhancing the cancelling magnetic field, wherein, on the basis of the current flowing through the feedback coil at the time of an equilibrium state in which the induction magnetic field and the cancelling magnetic field are cancelled out, the current to be measured is measured, wherein the feedback coil, the magnetic shield, and the magnetic field detection bridge circuit are formed on a same substrate.
Abstract:
A vehicle control apparatus includes a first section that recognizes a lane boundary line of a lane in which a vehicle is traveling. A second section recognizes a present position of a predetermined reference point of the vehicle. A third section calculates a predicted position of the reference point, wherein the predicted position is a predetermined interval ahead of the present position. A fourth calculates an imaginary lane boundary line, wherein the imaginary lane boundary line is tangent to the lane boundary line at a point close to the predicted position. A fifth section performs a control of preventing the vehicle from deviating from the lane by controlling the vehicle depending on positional relationship between the vehicle and the lane boundary line. A sixth section selectively permits and suppresses the control depending on positional relationship among the imaginary lane boundary line, the present position, and the predicted position.
Abstract:
Conventional analog front ends or AFEs for scanners are implemented using multiple integrated circuits or ICs. As a result, there is typically a problem of skew (due at least in part to manufacturing process variations) for these different ICs in the AFE. Here, an AFE is provided which serializes input data so as to compensate for skew.
Abstract:
A current sensor includes a magnetic detecting element, a bridge circuit including a plurality of resistance elements, and a feedback coil placed adjacent to the magnetic detecting element and generating a cancelling magnetic field for cancelling the induced magnetic field based on the output from the bridge circuit. The wiring patterns forming the bridge circuit are routed so as not to intersect with each other when seen in a plan view. Only the resistance elements constituting each series circuit of the bridge circuit are connected to each other by the wiring pattern in an enclosed area which encloses each resistance element constituting the bridge circuit, and the wiring pattern branched from the wiring pattern is connected to the terminal which is installed in a quantity of only one, outside the enclosed area.
Abstract:
Bacteria in water 9 exposed outdoors are effectively killed with ultraviolet (UV) light by suppressing post-treatment increase in the bacteria population due to photoreactivation. The apparatus shines UV light on the water 9 to kill bacteria and has UV light emitting diodes (LEDs) 1 that emit UVA light with a primary emission peak of 320 nm-400 nm. The antibacterial action of the UVA light emitted by the UV LEDs 1 prevents proliferation of bacteria in the disinfected water 9 due to photoreactivation.
Abstract:
Magnetoresistive effect elements R1 to R4 are a TMR element or CPP-GMR element. A multilayer film forming the magnetoresistive effect elements is formed to have a width dimension T1 and a length dimension L1 perpendicular to the width dimension T1. The length dimension L1 is longer than the width dimension T1. The width dimension of magnetic field generators of the coil is T2. The multilayer film 31 is positioned within the width dimension T3 of 60% in total of 30% each to the width dimension T2 of the magnetic field generators 3 and 4 of the coil in the direction towards both sides from the center of the width dimension T2 when seen in a plan view.