摘要:
A shadow portion is distinguished in a given image (S2 to S6). On the shadow portion, a conversion process based on the brightness value of a pixel is performed (S7), while on a portion other than the shadow portion, a conversion process based on the surface normal parameter which represents the surface normal of a photograph subject is performed (S8 and S9).
摘要:
A plurality of parameters included in a predetermined illumination equation which defines a brightness are acquired for each pixel of an image. For each of the parameters, a homogeneous region including pixels which are similar in value of the parameter is specified. In each of the specified homogeneous region, each of the parameters is converted according to details of the predetermined image conversion. The brightness of each pixel of a second image is determined using the values of the parameters obtained after the conversion.
摘要:
A shadow portion is distinguished in a given image (S2 to S6). On the shadow portion, a conversion process based on the brightness value of a pixel is performed (S7), while on a portion other than the shadow portion, a conversion process based on the surface normal parameter which represents the surface normal of a photograph subject is performed (S8 and S9).
摘要:
A plurality of parameters included in a predetermined illumination equation which defines a brightness are acquired for each pixel of an image. For each of the parameters, a homogeneous region including pixels which are similar in value of the parameter is specified. In each of the specified homogeneous region, each of the parameters is converted according to details of the predetermined image conversion. The brightness of each pixel of a second image is determined using the values of the parameters obtained after the conversion.
摘要:
An albedo estimating section produces an albedo image of an object from an original image captured by an image-capturing section by using light source information estimated by a light source information estimating section and shape information of the object obtained by a shape information obtaining section. An albedo super-resolution section performs super-resolution of the albedo image according to a conversion rule obtained from an albedo DB. A super-resolution section produces a high-resolution image obtained by performing super-resolution of the original image by using the super-resolution albedo image, the light source information and the shape information.
摘要:
The resolution of an image of an object is increased. The illumination equation parameters of the object are estimated, and a resolution-increasing process is performed on the estimated illumination equation parameters. Then, the resolution-increased illumination equation parameters are synthesized together to produce a high-resolution image. If there is a pixel for which the estimation precision of the estimated illumination equation parameters does not satisfy a predetermined precision, the illumination equation parameters are estimated again while feeding back the resolution-increased illumination equation parameters.
摘要:
An imaging device condition determination section determines whether a condition of an imaging device is suitable for obtaining light source information. When it is determined to be suitable, a light source image obtaining section obtains a light source image by the imaging device. A first imaging device information obtaining section obtains first imaging device information representing the condition of the imaging device at a point in time when the light source image is obtained. A second imaging device information obtaining section obtains second imaging device information representing the condition of the imaging device at a time of actual image capturing. A light source information estimating section estimates light source information at the time of image capturing by using the light source image and the first and second imaging device information.
摘要:
The resolution of an image of an object is increased. The illumination equation parameters of the object are estimated, and a resolution-increasing process is performed on the estimated illumination equation parameters. Then, the resolution-increased illumination equation parameters are synthesized together to produce a high-resolution image. If there is a pixel for which the estimation precision of the estimated illumination equation parameters does not satisfy a predetermined precision, the illumination equation parameters are estimated again while feeding back the resolution-increased illumination equation parameters.
摘要:
To provide an image capturing apparatus that detects a camera movement accurately and corrects image blurring appropriately. An image capturing apparatus (200) includes: an image sensor unit (103) that captures and outputs an input image (105); an output unit (121) that outputs an image of a framing area (160) of the input image (105); a motion vector calculation unit (106) and a stationary object detection unit (201) that detect motion vectors in an outer-frame area (161) of the input image (105) and derive detection accuracy; an outer-frame area adjustment unit (205) that adjusts the outer-frame area (161) in size so that the detection accuracy meets an outer-frame area change threshold (tr); and a camera movement calculation unit (113) and a framing area modification unit (115) that move the framing area (160) according to motion vectors in the adjusted outer-frame area (161), irrespective of motion vectors in the other area.
摘要:
To provide an image capturing apparatus that detects a camera movement accurately and corrects image blurring appropriately. An image capturing apparatus (200) includes: an image sensor unit (103) that captures and outputs an input image (105); an output unit (121) that outputs an image of a framing area (160) of the input image (105); a motion vector calculation unit (106) and a stationary object detection unit (201) that detect motion vectors in an outer-frame area (161) of the input image (105) and derive detection accuracy; an outer-frame area adjustment unit (205) that adjusts the outer-frame area (161) in size so that the detection accuracy meets an outer-frame area change threshold (tr); and a camera movement calculation unit (113) and a framing area modification unit (115) that move the framing area (160) according to motion vectors in the adjusted outer-frame area (161), irrespective of motion vectors in the other area.