摘要:
There is provided a layout structure of a semiconductor integrated circuit capable of preventing the thinning of a metal wiring line close to a cell boundary and wire breakage therein without involving increases in the amount of data for OPC correction and OPC process time. In a region interposed between a power supply line and a ground line each placed to extend in a first direction, first and second cells each having a transistor and an intra-cell line each for implementing a circuit function are placed to be adjacent to each other in the first direction. In a boundary portion between the first and second cells, a metal wiring line extending in a second direction orthogonal to the first direction is placed so as not to short-circuit the power supply line and the ground line.
摘要:
There is provided a layout structure of a semiconductor integrated circuit capable of preventing the thinning of a metal wiring line close to a cell boundary and wire breakage therein without involving increases in the amount of data for OPC correction and OPC process time. In a region interposed between a power supply line and a ground line each placed to extend in a first direction, first and second cells each having a transistor and an intra-cell line each for implementing a circuit function are placed to be adjacent to each other in the first direction. In a boundary portion between the first and second cells, a metal wiring line extending in a second direction orthogonal to the first direction is placed so as not to short-circuit the power supply line and the ground line.
摘要:
In a layout structure of a semiconductor integrated circuit, when transistors are arranged in a constant gate wiring pitch, a common source diffusion region is provided between two adjacent transistors, a CA via is provided on the common source diffusion region, and a source wiring connected to the CA via is provided on the common source diffusion region. An inter-drain wiring connecting the drain regions of the two transistors is formed in a wiring layer higher than the source wiring. Therefore, the wiring path of the source wiring is not limited by the wiring path of the inter-drain wiring, and can be provided, covering the common source diffusion region to a further extent. As a result, the number of high-resistance CA vias or the flexibility of arrangement is increased, leading to a reduction in source resistance, resulting in an increase in operating speed of the semiconductor integrated circuit.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
This invention prevents a break in a signal wire disposed between wire ends due to attenuation and improves production yields of devices. In a standard cell, a first signal wire extends in a first direction. Second and third signal wires extend in a second direction substantially perpendicular to the first direction and are facing each other across the first signal wire. The second and third signal wires have the widths larger than the width of the first signal wire.
摘要:
A plurality of PMOS transistors are provided on a substrate along an X-axis direction such that a gate length direction of each of the PMOS transistors is parallel to the X-axis direction. A plurality of NMOS transistors are provided on the substrate along the X-axis direction such that a gate length direction of each of the NMOS transistors is parallel to the X-axis direction, and each of the plurality of NMOS transistors is opposed to a corresponding one of the PMOS transistors in the Y-axis direction. Gate lines respectively correspond to the PMOS transistors and the NMOS transistors, and are arranged parallel to each other and extend linearly along the Y-axis direction such that each of the gate lines passes through gate areas of the PMOS transistors and NMOS transistors which correspond to each of the gate lines.