Abstract:
An apparatus for identifying tires comprising: a rotational speed detecting means; a first calculating means for calculating a vehicle speed; a second calculating means for calculating acceleration/deceleration of the vehicle; a third calculating means for calculating a slip ratio; a fourth calculating means for respectively obtaining moving averages of the acceleration/deceleration and the slip ratios of the vehicle; a fifth calculating means for obtaining linear regression coefficients and correlation coefficients of the moving-averaged acceleration/deceleration of the vehicle and the slip ratio; a sixth calculating means for calculating a tire identifying coefficient; and a tire identifying means for identifying tires which is presently mounted based on the tire identifying coefficient. Differences in tread rigidities of the tires can be automatically reflected for controlling the vehicle.
Abstract:
An apparatus for detecting decrease in air-pressure for use in a two-wheeled vehicle including: a wheel speed detecting means for detecting wheel speeds; an acceleration calculating means for obtaining accelerations of a vehicle body of the two-wheeled vehicle; a slip rate calculating means for calculating slip rates when the acceleration of the vehicle body is in a specified range which is proximate to zero; an average value calculating means for obtaining average values of the slip rates and average vehicle body speeds; a difference calculating means for obtaining differences between the average values of the slip rates and a reference value which is based on an average vehicle body speed as preliminarily set when an internal pressure is normal; and a means for judging decrease in internal pressure. A decrease in air-pressure in a two-wheeled vehicle can be judged so as to enable safe driving.
Abstract:
An apparatus for determining a condition of road surface comprising: rotational speed detecting means for periodically detecting rotational speeds of four tires of a vehicle; first computing means for computing a slip ratio from measurement values of the rotational speed detecting means; second computing means for obtaining a relational formula between the slip ratio and either the acceleration or deceleration of the vehicle; and friction coefficient judging means for judging a coefficient of friction occurring between a road and a tire on the basis of a slope of the relational formula obtained by the second computing means. The road friction coefficient can be judged with high accuracy in a short time using only the wheel rotational speed information of four wheels, whereby the performance and safety of a vehicle can be increased.
Abstract:
A method for alarming decrease in tire air-pressure. The method includes the steps of: detecting rotational information of respective tires; respectively calculating and storing a wheel speed, a vehicle acceleration, a slip ratio between front and rear wheels, a running distance and a turning radius; accumulating the running distance, the moving-averaged vehicle acceleration and the slip ratio between front and rear wheels; obtaining a linear regression coefficient and a correlation coefficient of the vehicle acceleration and the slip ratio; judging whether at least a driving wheel tire has decompressed upon comparing a judged value of the linear regression coefficient and a reference value for internal pressure of the linear regression coefficient; and issuing an alarm of decrease in tire air-pressure. It is possible to improve performance and safety of the vehicle since it is possible to detect decompression of tires including at least one driving wheel tire, for instance, of not less than two wheel tires including the right and left driving wheels.
Abstract:
An apparatus for determining a condition of road surface comprising: rotational speed detecting means for periodically detecting rotational speeds of four tires of a vehicle; first computing means for computing a slip ratio from measurement values of the rotational speed detecting means; second computing means for obtaining a relational formula between the slip ratio and either the acceleration or deceleration of the vehicle; and friction coefficient judging means for judging a coefficient of friction occurring between a road and a tire on the basis of a slope of the relational formula obtained by the second computing means. The road friction coefficient can be judged with high accuracy in a short time using only the wheel rotational speed information of four wheels, whereby the performance and safety of a vehicle can be increased.
Abstract:
A method and an apparatus for judging road surface conditions are disclosed. The method includes the steps of: detecting rotational information of tires; storing the rotational information of the respective tires; calculating a vehicle velocity; calculating an acceleration/deceleration of the vehicle; calculating a slip ratio of left-sided front and rear wheels and right-sided front and rear wheels and a slip ratio of front and rear wheels, respectively; calculating an amount of fluctuation in differences in slip ratios between the right and left wheels; obtaining a linear regression coefficient and a correlation coefficient between the slip ratio of the front and rear wheels and the acceleration/deceleration of the vehicle; and setting a threshold for judging road surface conditions. The method and apparatus allow for road surface conditions to be judged accurately.
Abstract:
Disclosed is a cap unit wherein safety is increased by preventing a reversed flow of a puncture-sealing agent. A cap main body (33) comprises an air flow passage (31) consisting of a vertical flow passage (31A) extending downward from an air passage upper opening (31a), a lateral flow passage (31B) laterally extending from an air intake port (31b), and a connecting flow passage (31C) connecting therebetween. The air flow passage (31) is provided with a reversed flow preventing device (22). The cap main body (33) is provided with a vertical hole (40) consisting of first to fourth vertical holes (40A to 40D) which have inner diameters increasing downwardly from the upper end in a stepwise manner, and the first to third vertical holes (40A to 40C) form the vertical flow passage (31A).
Abstract:
Deadhesion of an IC tag inlet during vulcanization molding of tire is suppressed, while preventing adhesion of a portion other than a sticking out portion. An IC tag comprises a sheet-like IC tag inlet 2, a protective cover 3 of an unvulcanized rubber sheet adhered to the surface Sf of the inlet 2 through a primer layer 10 and an adhesive layer 11, and an antiadhesive layer 4 formed on the rear surface Sr of the inlet 2, wherein a maximum value Ga′max of storage shear modulus Ga′ of a rubber of the protective cover 3 at a temperature of 150 to 200° C. and a storage shear modulus Gb′0 of the primer layer 10 at a temperature T0 showing the maximum value Ga′max satisfy the following equation: Ga′max×10−2
Abstract:
A pneumatic tire (1) has a tire cavity surface (HS) to which an accommodation tool (11) for accommodating an electronic component is bonded. The accommodation tool (11) includes an accommodation space (10) for accommodating an electronic component (W) therein, and includes a bonding region (11Sb) which is bonded to the tire cavity surface (HS) and which is provided on one end of a back surface (11S) directed to the tire cavity surface (HS). Only the bonding region (11Sb) is bonded to the tire cavity surface (HS), thereby making it possible to separate a portion of a non-bonding region (11Sa) on the side of the other end of the back surface (11S) from the tire cavity surface (HS).
Abstract:
A pneumatic tire (1) has a tire cavity surface (HS) to which an accommodation tool (11) for accommodating an electronic component is bonded. The accommodation tool (11) includes an accommodation space (10) for accommodating an electronic component (W) therein, and includes a bonding region (11Sb) which is bonded to the tire cavity surface (HS) and which is provided on one end of a back surface (11S) directed to the tire cavity surface (HS). Only the bonding region (11Sb) is bonded to the tire cavity surface (HS), thereby making it possible to separate a portion of a non-bonding region (11Sa) on the side of the other end of the back surface (11S) from the tire cavity surface (HS).