摘要:
A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
摘要:
A fuel cell system includes a fuel cell, a controller, a resistance sensor, and a regulator. The fuel cell has a cathode plate, an anode plate, and an ion-exchange membrane interposed between the cathode plate and the anode plate. The controller is for controlling a gas flow rate to the anode plate. The resistance sensor is coupled to the fuel cell for measuring a resistance of the fuel cell. The regulator is coupled to the controller and coupled to the anode plate for regulating the gas flow to the anode plate. The controller receives a signal from the resistance sensor and is configured to control the regulator to adjust the gas flow to the anode plate based on the signal from the resistance sensor.
摘要:
A fuel cell stack include a first group of cells, provided in the vicinity of the overall negative end of a fuel cell stack, and second group of cells, provided throughout the remainder of the fuel cell stack. The first cells have a higher resistance to flooding than the second cells, and the overall polarity of the fuel cell stack is reversed, the end of the stack where the water content is largest is made overall positive.
摘要:
In a fuel cell stack, first cells are provided only at and in the vicinity of the end part of the fuel cell stack that is overall negative during fuel cell electrical generation. Second cells are provided at other locations in the stack location, so that flooding is unlikely to occur.
摘要:
In a diagnostic method for a fuel cell, the amount of cross leak is determined by supplying the anode of the fuel cell with a hydrogen or hydrogen-containing gas, and supplying the cathode with an inert gas or vacuuming the cathode, and measuring the voltage of each cell.
摘要:
A fuel cell system includes a fuel cell, a controller, a resistance sensor, and a regulator. The fuel cell has a cathode plate, an anode plate, and an ion-exchange membrane interposed between the cathode plate and the anode plate. The controller is for controlling a gas flow rate to the anode plate. The resistance sensor is coupled to the fuel cell for measuring a resistance of the fuel cell. The regulator is coupled to the controller and coupled to the anode plate for regulating the gas flow to the anode plate. The controller receives a signal from the resistance sensor and is configured to control the regulator to adjust the gas flow to the anode plate based on the signal from the resistance sensor.
摘要:
A fuel cell system according to the present invention is characterized by comprising a measurement unit which measures an impedance of a fuel cell in a predetermined frequency region, and a regulation unit which regulates an amount of a gas to be supplied to the fuel cell based on a measured value of the impedance in the predetermined frequency region. According to such a constitution, the impedance of the fuel cell in the predetermined frequency region (e.g., a low frequency region) is measured, and the amount of the gas (e.g., an amount of an oxidizing gas) to be supplied to the fuel cell is regulated based on this measured value of the impedance. Here, since the impedance of the fuel cell in the predetermined frequency region largely differs with a fuel supply state (see FIG. 2), the amount of the gas to be supplied to the fuel cell can be regulated based on the measured value of the impedance to realize a highly efficient and stable operation.
摘要:
A fuel cell system according to the present invention is characterized by comprising a fuel cell, measurement means for measuring impedances of the fuel cell in two kinds or more of frequency regions, and first judgment means for judging two or more parameters concerned with an internal state of the fuel cell based on measurement results of the impedances in the respective frequency regions. According to such a constitution, the impedances in the two or more types of frequency regions (a high frequency region, a low frequency region and the like) are measured to judge two or more parameters such as a wet state of an electrolytic film of the fuel cell and a supply state of a fuel gas, which are concerned with the internal state of the fuel cell based on this measurement result. Since such judgment is performed, as compared with the conventional technology, the internal state of the fuel cell can accurately be grasped, and highly efficient and highly robust control of the fuel cell system can be performed.
摘要:
Provided is a fuel cell, the output voltage of which is improved by making a membrane moist state uniform. An anode-side gas diffusion layer and a cathode-side gas diffusion layer are joined to a membrane electrode assembly, and a separator is joined to the anode-side gas diffusion layer. The separator has a recess portion and a protrusion portion formed to constitute a gas flow path and a refrigerant flow path, respectively. The cross-sectional area of the recess portion is made relatively small at the downstream side in comparison with that at the upstream side, and the cross-sectional area of the protrusion portion is made relatively large at the downstream side in comparison with that at the upstream side, thereby improving the moist state.
摘要:
Provided is a fuel cell, the output voltage of which is improved by making a membrane moist state uniform. An anode-side gas diffusion layer and a cathode-side gas diffusion layer are joined to a membrane electrode assembly, and a separator is joined to the anode-side gas diffusion layer. The separator has a recess portion and a protrusion portion formed to constitute a gas flow path and a refrigerant flow path, respectively. The cross-sectional area of the recess portion is made relatively small at the downstream side in comparison with that at the upstream side, and the cross-sectional area of the protrusion portion is made relatively large at the downstream side in comparison with that at the upstream side, thereby improving the moist state.