摘要:
An electro-optical device includes a plurality of pixel circuits each including a light-emitting element and a driving transistor for driving the light-emitting element; data lines that are connected to the plurality of pixel circuits and that supply data signals representing light-emitting gray-scale levels to the pixel circuits; and a data line driving circuit that supplies the data signals to the pixel circuits through the data lines. In addition, the data line driving circuit applies to each pixel circuit in a predetermined sequence a forward frame period supplying a data signal having a forward bias voltage for making the light-emitting element emit light and a backward frame period supplying a data signal having a backward bias voltage for making the light-emitting element not emit light, and drives each of the pixel circuits.
摘要:
To provide an electro-optical device, a driving method therefor, and an electronic apparatus which can accurately control the brightness of electro-optical elements in accordance with the signal level of a data signal. A brightness detection circuit 15 is provided which samples power-supply current Io every time one scan line is selected and which converts the power-supply current Io into a digital voltage signal DS having a digital value corresponding to the power-supply current Io. A light-emission-period control circuit 16 generates light-emission-period control signals H1 to Hn in accordance with a light-emission-period adjusting signal F corresponding to the digital voltage signal DS and outputs the light-emission-period control signals H1 to Hn to corresponding control-signal supply lines G1 to Gn. Further, light-emission-period control transistors of the pixels 20 which are connected to the corresponding control-signal supply lines G1 to Gn are on/off controlled, thereby controlling the light-emission period of the electro-optical elements.
摘要:
To provide an electro-optical device, a driving method therefor, and an electronic apparatus which can accurately control the brightness of electro-optical elements in accordance with the signal level of a data signal. A brightness detection circuit 15 is provided which samples power-supply current Io every time one scan line is selected and which converts the power-supply current Io into a digital voltage signal DS having a digital value corresponding to the power-supply current Io. A light-emission-period control circuit 16 generates light-emission-period control signals H1 to Hn in accordance with a light-emission-period adjusting signal F corresponding to the digital voltage signal DS and outputs the light-emission-period control signals H1 to Hn to corresponding control-signal supply lines G1 to Gn. Further, light-emission-period control transistors of the pixels 20 which are connected to the corresponding control-signal supply lines G1 to Gn are on/off controlled, thereby controlling the light-emission period of the electro-optical elements.
摘要:
To provide a method for manufacturing an electro-optical device that is capable of controlling more smoothly brightness as compared with a control in every one frame and preventing large current from flowing when switching frames in a peak brightness control, a method of driving the same, and an electronic apparatus. A grayscale data average value operation unit 33 performs, for each line, an average value calculation of grayscale levels of images corresponding to images of an one-frame-length and outputs, based on average value for the one frame-length, mode signals M1 to M4 for brightness control in each line. A driver input data converter 34 rewrites, based on the mode signals M1 to M4 from the grayscale data average value operation unit 33, grayscale data HD for one line among grayscale data from a frame memory 31 into grayscale data DD. The driver input data converter 34 outputs grayscale data DD which is image data for the one frame-length and whose brightness is adjusted in a signal generating circuit.
摘要:
An electro-optical device includes a plurality of pixel circuits each including a light-emitting element and a driving transistor for driving the light-emitting element; data lines that are connected to the plurality of pixel circuits and that supply data signals representing light-emitting gray-scale levels to the pixel circuits; and a data line driving circuit that supplies the data signals to the pixel circuits through the data lines. In addition, the data line driving circuit applies to each pixel circuit in a predetermined sequence a forward frame period supplying a data signal having a forward bias voltage for making the light-emitting element emit light and a backward frame period supplying a data signal having a backward bias voltage for making the light-emitting element not emit light, and drives each of the pixel circuits.
摘要:
A data line driving circuit connected to data lines includes a bit shift unit that outputs input digital data composed of a plurality of bits for defining the brightness of pixels or bit-shifts the plurality of bits to lower levels to output them, based on a control signal, and a supply unit that supplies the output digital data of the bit shift unit to a D/A conversion unit. The D/A conversion unit supplies gray-scale signals obtained by D/A converting the output digital data of the supply unit to the data lines.
摘要翻译:连接到数据线的数据线驱动电路包括位移单元,其输出由用于定义像素的亮度的多个位组成的输入数字数据,或者将多个位进行位移移位到较低的电平以输出它们,以基于控制 信号和供给单元,其将位移单元的输出数字数据提供给D / A转换单元。 D / A转换单元将通过D / A获得的灰度信号提供给供给单元的输出数字数据到数据线。
摘要:
A signal processing unit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.
摘要:
A data line driving circuit connected to data lines includes a bit shift unit that outputs input digital data composed of a plurality of bits for defining the brightness of pixels or bit-shifts the plurality of bits to lower levels to output them, based on a control signal, and a supply unit that supplies the output digital data of the bit shift unit to a D/A conversion unit. The D/A conversion unit supplies gray-scale signals obtained by D/A converting the output digital data of the supply unit to the data lines.
摘要翻译:连接到数据线的数据线驱动电路包括位移单元,其输出由用于定义像素的亮度的多个位组成的输入数字数据,或者将多个位进行位移移位到较低的电平以输出它们,以基于控制 信号和供给单元,其将位移单元的输出数字数据提供给D / A转换单元。 D / A转换单元将通过D / A获得的灰度信号提供给供给单元的输出数字数据到数据线。
摘要:
A signal processing unit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.
摘要:
A signal processing unit that generates data signals for controlling gray-scale levels of electro-optical elements includes a first D/A conversion unit that generates gray-scale signals from gray-scale data for designating the gray-scale levels of the electro-optical elements; a storage unit that stores correction data indicating correction values with respect to the gray-scale signals; a second D/A conversion unit that has resolution different from that of the first D/A conversion unit, and that generates correction signals from the correction data stored in the storage unit; and a synthesizing unit that synthesizes the gray-scale signals generated by the first D/A conversion unit with the correction signals generated by the second D/A conversion unit to generate the data signals.