摘要:
A stereophonic signal processing apparatus, capable of reproducing sounds of musical instruments in high fidelity while effectively eliminating vocal signals, includes a right filter combination 121 and 122 for extracting a right low-frequency signal and a right high-frequency signal from a right input signal, a left filter combination 111 and 112 for extracting a left low-frequency signal and a left high-frequency signal from a left input signal, a subtraction circuit 131 for subtracting a right input signal and a left input signal and thereby generating a vocal elimination signal, a right addition circuit 123 for adding a right low-frequency signal and a right high-frequency signal from the right filter combination to a vocal elimination signal from the subtraction circuit and thereby generating a right output signal, a left addition circuit 113 for adding a left low-frequency signal and a left high-frequency signal from the left filter combination to a vocal elimination signal from the subtraction circuit and thereby generating a left output signal, and a controller 140 for changing characteristics of both of the right filter combination and the left filter combination according to at least one of a right input signal and a left input signal.
摘要:
To realize a stereo signal processing apparatus which effectively removes vocal signals, without degradation of stereo effect, with a simple construction. The stereo signal processing apparatus, which removes vocal signals included in right and left input signals, comprises right filter means 121, 122 for extracting a right low-frequency signal and a right high-frequency signal from a right input signal, left filter means 111 and 112 for extracting a left low-frequency signal and a left high-frequency signal from a left input signal, subtraction means 131 for performing subtraction between the right input signal and the left input signal to generate a vocal removal signal, right addition means 123 for adding the right low-frequency signal and the right high-frequency signal from said right filter means to the vocal removal signal from said subtraction means so as to generate a right output signal, a left addition means 113 for adding the left low-frequency signal and the left high-frequency signal from said left filter means to the vocal removal signal from said subtraction means so as to generate a left output signal. The right filter means and the left filter means comprise filters having filter types different from each other.
摘要:
A succession of music note data are provided. Those music note data which partially overlap in duration are corrected so that they completely overlap in duration. The corrected music note data are used for music navigation. As a result, the apparatus can properly guide a player to play chords or operate a plurality of keys at the same time.
摘要:
A musical sound waveform generator includes a carrier signal generating unit, a modulation signal generating unit, a mixing controlling unit and a waveform outputting unit. The characteristics of the carrier signal from the carrier signal generating unit are determined such that the musical sound waveform generated by the waveform outputting unit is a sine wave or a cosine wave with a single frequency, where the mixing ratio of the modulation signal is made 0 by the mixing controlling unit. Therefore, the mixing controlling unit presets the mixing ratio of the modulation signal to be 0, making it possible to generate a musical sound waveform which is only a sine wave or a cosine wave of a single frequency. During the performance, the mixing ratio can, for example, be determined at a high value immediately after the start of sound generation and thereafter reduced to near 0 with time. Thereby, the frequency characteristics of the musical sound waveform can be controlled such that the musical sound waveform is changed from one having a lot of higher harmonics to one having only a single sine wave component or a single cosine wave component.
摘要:
An optical disk (10) of the present invention has a substrate (11) included a resin-impregnated paper, in which resin is impregnated into paper, or resin-coated paper, in which the paper surface is coated with a resin, and a recording layer (13) formed on at least one side of the substrate (11). This type of optical disk (10) has performance equal to that of conventional optical disks and has a minimal effect on the environment during disposal. In addition, a manufacturing method of an optical disk of the present invention has a recording layer sheet fabrication step in which a recording layer sheet is fabricated by forming tracks on a recording layer base material, and a recording layer sheet lamination step in which a recording layer (13) included the recording layer sheet is provided on a substrate (11) included resin-impregnated paper or resin-coated paper by laminating the recording layer sheet with the resin-impregnated paper in which a resin is impregnated into paper or the resin-coated paper in which the surface of the paper is coated with a resin. This type of manufacturing method of an optical disk allows optical disk (10) to be produced inexpensively.
摘要:
An optical disk (10) of the present invention has a substrate (11) included a resin-impregnated paper, in which resin is impregnated into paper, or resin-coated paper, in which the paper surface is coated with a resin, and a recording layer (13) formed on at least one side of the substrate (11). This type of optical disk (10) has performance equal to that of conventional optical disks and has a minimal effect on the environment during disposal. In addition, a manufacturing method of an optical disk of the present invention has a recording layer sheet fabrication step in which a recording layer sheet is fabricated by forming tracks on a recording layer base material, and a recording layer sheet lamination step in which a recording layer (13) included the recording layer sheet is provided on a substrate (11) included resin-impregnated paper or resin-coated paper by laminating the recording layer sheet with the resin-impregnated paper in which a resin is impregnated into paper or the resin-coated paper in which the surface of the paper is coated with a resin. This type of manufacturing method of an optical disk allows optical disk (10) to be produced inexpensively.
摘要:
In a laminated packaging material including a substrate, a silicon oxide layer, an adhesive layer or anchor coat layer and a heat-sealable resin layer which are successively laminated, the adhesive layer or anchor coat layer is formed by coating a water-based adhesive composition or a water-based anchor coat agent composition, respectively, on the silicon oxide layer, followed by drying. On the anchor coat layer, a solvent-free adhesive layer may be provided. Also in a laminated packaging material including a substrate, a silicon oxide layer, an ink layer, an adhesive layer and a heat-sealable resin layer which are successively laminated, the ink layer is formed by coating a water-based ink composition on the silicon oxide layer, followed by drying. In this case, the adhesive layer may preferably be formed by coating a water-based adhesive composition on the ink layer, followed by drying. When an oil-based ink is used as the ink composition, the anchor coat layer may preferably be formed by coating a water-based anchor coat agent composition on the silicon oxide layer, followed by drying.
摘要:
There is produced a cable hanger which can alternately and continuously form a Z-winding spiral and an S-winding spiral using a hanger wire. A hanger wire is supplied from one end of a housing and sent out from the other end thereof. A plurality of spiral forming dice are accommodated in a cylindrical space in the housing such that the spiral forming dice are adjacent to each other and can rotate independently from each other. Each spiral forming die includes a bottom face forming a shape corresponding to a curvature of a spiral on a plane intersecting with an axis at right angles between an inner peripheral face of the housing and the bottom face, a Z-winding wall face forming a shape corresponding to a pitch of the Z-winding spiral inclined with respect to the plane, and an S-winding wall face forming a shape corresponding to a pitch of the S-winding spiral. The Z-winding wall face and the S-winding wall face intersect with each other at a central portion of the spiral forming die in its longitudinal direction. A region sandwiched between the Z-winding wall face and the S-winding wall face is constituted by the bottom face in front of and behind the intersection.
摘要:
Resonators generate resonance sound data of given resonant frequencies based on sound signal data corresponding to a pitch of a key. Each resonator includes a delay circuit which delays an input based on delay time data, a second adder which adds an output from the delay circuit to input sound signal data, and a low-pass filter which performs filtering depending on a filter control signal on the output from the second adder. An output from the low-pass filter is input to the delay circuit, and a first adder adds outputs from the resonators. A storage device stores a coefficient table containing items of delay time data to be provided to the resonators, and the items of the delay time data do not match with frequencies corresponding to pitches of keys.
摘要:
A plurality of different kinds of rhythm playing pattern data corresponding to each of the different rhythm sounds being used to play specified rhythms is stored in a rhythm pattern memory section (1). When a particular kind of rhythm is being played automatically, one particular kind of rhythm is selectively designated from a plurality of kinds of rhythms by the operation of the rhythm kind selecting unit (21f). Then, a particular kind of rhythm playing pattern data corresponding to the selected particular kind of rhythm is selected from a plurality of kinds of rhythm playing pattern data preset in the rhythm pattern memory section (1) corresponding to each of the rhythm sounds by the operation of the pattern selection section (2,21,21a-21e). According to this arrangement, since a plurality of rhythm playing patterns are preset to each of the rhythm sounds for each different kind of rhythm, an automatic rhythm play using a selected one of a plurality of rhythm playing patterns can be performed for each rhythm sound by the selecting operation of the pattern selection section (2,21,21a-21e), though the same kind of rhythm is automatically played with the same rhythm sound.