摘要:
An optical transmission system in which a wavelength-division-multplexed (WDM) optical signal including a plurality of optical signals having different wavelengths is demultiplexed into first optical signals and second optical signals. The second optical signals have wavelengths longer than wavelengths of the first optical signals. A first dispersion compensator compensates dispersion of the first optical signals. A second dispersion compensator compensates dispersion of the second optical signals. The dispersion compensated first and second optical signals are then multiplexed together.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength .lambda..sub.0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
An optical wavelength multiplex transmission method uses a band around a zero dispersion wavelength of an optical fiber to compensate for waveform degradation, which is produced by a synergetic effect of self phase modulation and chromatic dispersion, to increase transmission distance and transmission rate in optical systems. The optical dispersion compensation method is performed in an optical system including a transmitter, a repeater and a receiver, which collectively transmit and receive optical information along the optical fiber. Light is transmitted within a transmissible band which is defined by an allowable dispersion value determined from a synergetic effect of self phase modulation and group velocity dispersion in the optical fiber. The transmissible band is set on a shorter wavelength side than a shorter wavelength end .lambda..theta.-.DELTA..lambda..theta. or on a longer wavelength side than a longer wavelength end .lambda..theta.+.DELTA..lambda..theta. of the zero-dispersion wavelength deviation range of the optical fiber. The zero dispersion wavelength .DELTA..theta. of the optical fiber is shifted to apparently arrange the signal light into the transmissible band to compensate for the dispersion amount of the optical transmission system.
摘要:
An optical transmission system in which a wavelength-division-multiplexed (WDM) optical signal including a plurality of optical signals having different wavelengths is demultiplexed into first optical signals and second optical signals. The second optical signals have wavelengths longer than wavelengths of the first optical signals. A first dispersion compensator compensates dispersion of the first optical signals. A second dispersion compensator compensates dispersion of the second optical signals. The dispersion compensated first and second optical signals are then multiplied together.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength &lgr;0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
A dispersion compensator of the present invention includes a dispersion compensation fiber and a polarization conversion mirror. The dispersion compensation fiber has color dispersion of a sign opposite to the sign of the color dispersion of the optical fiber transmission line, and the length thereof is set so as to conform to the value of the color dispersion of the optical fiber transmission line. Light propagating in the optical fiber transmission line then propagates in the dispersion compensation fiber from a first end toward a second end of it and is supplied to the polarization conversion mirror. The light supplied to the polarization conversion mirror is converted into light of a polarization condition orthogonal and time-reversed to the polarization condition of the light supplied to the polarization conversion mirror, and propagates in the dispersion compensation fiber from the second end toward the first end of it. This enables compensation not only for color dispersion but also for polarization mode dispersion.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength λ0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength &lgr;&thgr; of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength .lambda..sub.0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength &lgr;0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.