摘要:
An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.6° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
摘要:
The present invention provides a method for efficiently manufacturing a titanium oxide-containing slag from a material including titanium oxide and iron oxide, wherein a reduction of titanium dioxide is suppressed and the electric power consumption is minimized. The method includes the steps of: heating a raw material mixture including titanium oxide, iron oxide, and a carbonaceous reductant, or the raw material mixture further including a calcium oxide source, in a reducing furnace; reducing the iron oxide in the mixture to form reduced iron; feeding the resultant mixture to a heating melting furnace; heating the resultant mixture in the heating melting furnace to melt the reduced iron and separate the reduced iron from a titanium oxide-containing slag; and discharging and recovering the titanium oxide-containing slag out of the furnace.
摘要:
An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.96° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
摘要:
An object of the present invention is to provide a method for reducing a chromium-containing material at a high chromium reduction degree. In the method of the present invention, a mixture of a feedstock containing chromium oxide and a carbonaceous reductant is heated and reduced by radiation heating in a moving hearth furnace. The average rate of raising the temperature of the mixture in the reduction is preferably 13.96° C./s or higher in the period from the initiation of the radiation heating of the mixture until the mixture reaches 1,114° C.
摘要:
The present invention provides a method for efficiently manufacturing a titanium oxide-containing slag from a material including titanium oxide and iron oxide, wherein a reduction of titanium dioxide is suppressed and the electric power consumption is minimized. The method includes the steps of: heating a raw material mixture including titanium oxide, iron oxide, and a carbonaceous reductant, or the raw material mixture further including a calcium oxide source, in a reducing furnace; reducing the iron oxide in the mixture to form reduced iron; feeding the resultant mixture to a heating melting furnace; heating the resultant mixture in the heating melting furnace to melt the reduced iron and separate the reduced iron from a titanium oxide-containing slag; and discharging and recovering the titanium oxide-containing slag out of the furnace.
摘要:
The present invention provides a process that is useful in producing ferronickel having a high Ni content at low cost with high efficiency and reproducibility even if a low-grade feedstock containing nickel oxide is used. In particular, a feedstock containing nickel oxide and iron oxide is mixed with a carbonaceous reductant, the mixture is formed into agglomerates with an agglomerator, and the agglomerates are heated and reduced in a moving hearth furnace, whereby reduced agglomerates in which the Ni metallization degree is 40% or more and the Fe metallization degree is at least 15% less than the Ni metallization degree are prepared by adjusting the retention time of the agglomerates placed in the moving hearth furnace. The reduced agglomerates, in which the Ni component has been primarily reduced as compared with the Fe component, are smelted in a smelting furnace, whereby ferronickel having a high Ni content is obtained.
摘要:
The present invention provides a process that is useful in producing ferronickel having a high Ni content at low cost with high efficiency and reproducibility even if a low-grade feedstock containing nickel oxide is used. In particular, a feedstock containing nickel oxide and iron oxide is mixed with a carbonaceous reductant, the mixture is formed into agglomerates with an agglomerator, and the agglomerates are heated and reduced in a moving hearth furnace, whereby reduced agglomerates in which the Ni metallization degree is 40% or more and the Fe metallization degree is at least 15% less than the Ni metallization degree are prepared by adjusting the retention time of the agglomerates placed in the moving hearth furnace. The reduced agglomerates, in which the Ni component has been primarily reduced as compared with the Fe component, are smelted in a smelting furnace, whereby ferronickel having a high Ni content is obtained.
摘要:
The present invention provides a method for efficiently manufacturing a titanium oxide-containing slag from a material including titanium oxide and iron oxide, wherein a reduction of titanium dioxide is suppressed and the electric power consumption is minimized. The method includes the steps of: heating a raw material mixture including titanium oxide, iron oxide, and a carbonaceous reductant, or the raw material mixture further including a calcium oxide source, in a reducing furnace; reducing the iron oxide in the mixture to form reduced iron; feeding the resultant mixture to a heating melting furnace; heating the resultant mixture in the heating melting furnace to melt the reduced iron and separate the reduced iron from a titanium oxide-containing slag; and discharging and recovering the titanium oxide-containing slag out of the furnace.
摘要:
A method for manufacturing molten iron includes a step of charging a carbonaceous material, a flux, and solid reduced iron obtained by thermally reducing carbon composite iron oxide agglomerates into an arc melting furnace and melting the solid reduced iron using arc heating in the melting furnace while an inert gas is blown into a molten iron layer contained in the melting furnace from a bottom blowing tuyere disposed on a bottom of the melting furnace to stir the molten iron layer, wherein the carbonaceous material is charged so that a carbonaceous material suspending slag layer in which the carbonaceous material is suspended is formed in an upper portion of a slag layer formed on the molten iron layer by slag produced when the solid reduced iron is melted into the molten iron and so that a carbonaceous material coating layer composed of only the carbonaceous material is further formed on the carbonaceous material suspending slag layer, and the molten iron and the slag stored in the melting furnace are tapped from a tap hole formed in a lower portion of a furnace wall of the melting furnace.
摘要:
A method for manufacturing molten iron comprises charging a carbonaceous material, a flux, and solid reduced iron obtained by thermally reducing carbon composite iron oxide agglomerates into an arc melting furnace and melting the solid reduced iron using arc heating in the melting furnace while an inert gas is blown into a molten iron layer from a bottom blowing tuyere on a bottom of the melting furnace, wherein: a carbonaceous material suspending slag layer is formed in an upper portion of a slag layer formed on the molten iron layer when the solid reduced iron is melted into the molten iron; a carbonaceous material coating layer having the carbonaceous material is formed on the carbonaceous material suspending slag layer; and the molten iron and the slag stored in the melting furnace are tapped from a tap hole formed in a lower portion of a furnace wall of the melting furnace.