Abstract:
Provided are a fixed-type electric furnace enabling continuous operation which allows melting without the interruption of power supply and tapping in a fixed state, and a fixed-type electric furnace and a molten steel production method using same. The fixed-type electric furnace comprises: a preheating furnace which is disposed on the side of a melting furnace and preheats an iron source (scrap) using exhaust gas from the melting furnace; a supply means for supplying the iron source, which has been preheated in the preheating furnace, to the melting furnace; the melting furnace comprising electrodes for melting the preheated iron source; and a fixed-type discharge means for discharging molten steel which has been melted in the melting furnace, wherein the preheating furnace is integrally connected to the melting furnace.
Abstract:
A graphitization furnace includes: a first electrode; a second electrode disposed so as to face the first electrode; a first energized heating element provided on a surface of the first electrode facing the second electrode; and a second energized heating element provided on a surface of the second electrode facing the first electrode. The first and second energized heating elements are configured to allow to be disposed therebetween, an object to be processed. The graphitization furnace is configured to heat and graphitize the object to be processed disposed between the first and second energized heating elements by energizing between the first and second electrodes.
Abstract:
A method for supplying energy to a scrap metal pile (9) in an electric arc furnace (2). Energy is supplied by jets of hot gas in a first phase. Energy is supplied by electric arcs in a second phase after the first phase is completed. Hot gas is supplied via at least six jets. A device (1) for the method has an electric arc furnace (2), one or more blowing devices (6a, 6b, 6c), supply jets of reactant hot air into the chamber (7) of the electric arc furnace (8). The devices have a total of at least six nozzles (10a, 10b, 10c, 10d, 10e, 10f) with nozzle openings. Fuel conducting devices (8) supply fuel to the jets of reactant hot air.
Abstract:
A control method for melting a metal charge in a furnace comprising at least a hearth containing the metal charge and a roof. The method provides that the hearth is weighed by means of a plurality of weighing elements distributed along the perimeter of the base of the hearth, and that the values detected by the plurality of weighing elements are sent to a control unit in order to obtain information relating to the distribution of the metal charge inside the hearth.
Abstract:
According to one embodiment of the invention, a method for preventing the failure of a system, which includes one or more pipes, or one or more cooling jackets, or one or more fluid cooled system components carrying a fluid, involves detecting one or more pressure levels of the fluid in the one or more pipes at one or more points, then comparing the detected pressure levels to a corresponding one or more predetermined limitation values. If the detected pressure levels exceed the corresponding limitation values, a shut-down signal is generated. The shut-down signal triggers the adjusting of one or more systems responsible for causing thermal variations of the fluid, preventing the system from failing while allowing the system to continue operation shortly thereafter.
Abstract:
According to one embodiment of the invention, a method for preventing the failure of a system, which includes one or more pipes, or one or more cooling jackets, or one or more fluid cooled system components carrying a fluid, involves detecting one or more pressure levels of the fluid in the one or more pipes at one or more points, then comparing the detected pressure levels to a corresponding one or more predetermined limitation values. If the detected pressure levels exceed the corresponding limitation values, a shut-down signal is generated. The shut-down signal triggers the adjusting of one or more systems responsible for causing thermal variations of the fluid, preventing the system from failing while allowing the system to continue operation shortly thereafter.
Abstract:
The invention relates to a device for heating molten metal by the use of a heater that can be immersed into the molten metal. This immersion heater includes an outer cover formed of one or more materials resistant to the molten metal in which the immersion heater is to be used, and a heating element inside of the outer cover, where the heating element is protected from contacting the molten metal.
Abstract:
A method for manufacturing molten iron includes a step of charging a carbonaceous material, a flux, and solid reduced iron obtained by thermally reducing carbon composite iron oxide agglomerates into an arc melting furnace and melting the solid reduced iron using arc heating in the melting furnace while an inert gas is blown into a molten iron layer contained in the melting furnace from a bottom blowing tuyere disposed on a bottom of the melting furnace to stir the molten iron layer, wherein the carbonaceous material is charged so that a carbonaceous material suspending slag layer in which the carbonaceous material is suspended is formed in an upper portion of a slag layer formed on the molten iron layer by slag produced when the solid reduced iron is melted into the molten iron and so that a carbonaceous material coating layer composed of only the carbonaceous material is further formed on the carbonaceous material suspending slag layer, and the molten iron and the slag stored in the melting furnace are tapped from a tap hole formed in a lower portion of a furnace wall of the melting furnace.
Abstract:
An apparatus for melting an electrically conductive metallic material comprises an auxiliary ion plasma electron emitter configured to produce a focused electron field including a cross-sectional profile having a first shape. The apparatus further comprises a steering system configured to direct the focused electron field to impinge the focused electron field on at least a portion of the electrically conductive metallic material to at least one of melt or heat any solidified portions of the electrically conductive metallic material, any solid condensate within the electrically conductive metallic material, and/or regions of a solidifying ingot.
Abstract:
A method and apparatus for melting vitrifiable materials employs a melting tank for containing a molten bath with an upper surface. The tank has a floor and side walls and channels for discharging molten materials. A crown is situated above the floor and vitrifiable materials are introduced onto the upper surface of the molten bath. A plurality of electrodes having a selected shape and position are situated inside the tank for melting the vitrifiable materials with electric current. The electrodes rest on the floor and extend across the furnace to the opposite wall so as to reduce the head of the molten bath and consequently reduce melting time and energy consumption.