摘要:
A Sm—Fe—N magnet includes Sm—Fe—N particles each having a surface, a coating layer being provided on at least a portion of the surface or on at least a portion of an interface between at least two of the Sm—Fe—N particles, or being provided on both, wherein the coating layer includes a first layer and a second layer, the first layer being situated closer to the surface or the interface than is the second layer, he first layer includes α-Fe, the second layer includes a Sm—Fe—Zn alloy, and a Zn content contained in the second layer is 1 at % or more and 20 at % or less.
摘要:
A Sm—Fe—N magnet includes Sm—Fe—N particles, wherein an inter-particle metal phase is present between at least two of the Sm—Fe—N particles, an average particle diameter of the Sm—Fe—N particles is less than 2.0 μm, and a percentage of the Sm—Fe—N particles having an aspect ratio of 2.0 or more is 10% or less, the inter-particle metal phase includes a Fe3Zn10 phase and an α-Fe phase in a particle form, and in the inter-particle metal phase, an area ratio of the Fe3Zn10 phase is 80% or more.
摘要:
One embodiment of the present invention is that in samarium-iron-nitrogen magnet powder, a non-magnetic phase is formed on a surface of the samarium-iron-nitrogen magnet phase, and an arithmetic mean roughness Ra of the surface is 3.5 nm or less.
摘要:
One embodiment of the present invention includes, in a samarium-iron-nitrogen based magnet powder, a main phase containing samarium and iron, and a sub-phase containing samarium, iron, and at least one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten, and titanium, wherein an atomic ratio of a rare earth element to an iron group element is greater than an atomic ratio of the rare earth element to the iron group element of the main phase, wherein at least a part of a surface of the main phase is coated with the sub-phase.
摘要:
A samarium-iron-nitrogen alloy powder according to one embodiment of the present invention is characterized in that a value obtained by dividing the hydrogen content of the samarium-iron-nitrogen alloy powder by the BET specific surface area of the samarium-iron-nitrogen alloy powder is less than or equal to 400 ppm/(m2/g), and a value obtained by dividing the oxygen content of the samarium-iron-nitrogen alloy powder by the BET specific surface area of the samarium-iron-nitrogen alloy powder is less than or equal to 11,000 ppm/(m2/g).
摘要:
In a thermoelectric conversion module, each of a p-type element and an n-type element is configured by aligning a plurality of particles in series and connecting the particles to each other. Around a connection part in which the particles are connected to each other, a protrusion is protruded. The protrusion has a shape of continuously extending around the entire periphery of the connection part. The protrusion may be partly interrupted, but in such a case, a circumferential length of one interrupted portion is less than one half of the periphery of the connection part.
摘要:
A three-dimensional photonic crystal having a wide and sharp bandgap, a manufacturing method thereof, a structural body for manufacturing this photonic crystal, and a manufacturing method thereof are provided. The structural body is formed by placing monodisperse particles in a recess having a regular quadrangular pyramid shape formed in a container, arranging the particles three-dimensionally by applying vibration, and performing sintering, so that adjacent particles are connected to each other with necks provided therebetween. A dielectric resin is impregnated in voids of the structural body and is then cured to form a composite. The composite is immersed in a solution which dissolves only the structural body. Monodisperse particles exposed at the surface of the composite are dissolved, and monodisperse particles adjacent thereto with necks provided therebetween are then sequentially dissolved, so that the whole structural body is finally dissolved. Hence, a photonic crystal composed of the dielectric resin is manufactured.