Abstract:
Reception beamforming is executed using delay times that complexly vary in accordance with differences between transmission conditions. An irradiation area 32 of a transmission beam is calculated, and the lengths of segments, using which delay times are calculated, are set in accordance with the positional relationships between the calculated irradiation area 32 and reception scanning lines 31. For example, the reception scanning lines 31 are divided into areas A to C, and the lengths of segments 40b in the outer area B located outside of the irradiation area 32 are set shorter than the lengths of segments 40a and 40c in the inner areas A and C.
Abstract:
In performing aperture synthesis according to an ultrasound imaging apparatus, the amount of spatial change of amplification factors of phasing signals at respective receive phasing points are reduced, and a high-quality image is obtained. In a receive beamformer that generates an inter-transmission weight in accordance with a phasing range, and performs aperture synthesis processing, the inter-transmission weight being generated is applied to the receive phasing points within the phasing range obtained through transmission and reception, and the inter-transmission synthesis is performed. The inter-transmission weight is generated in such a manner that a variation form of the amplification factor between adjacent receive phasing points is smoothed and a difference of the amplification factor is reduced, as to each receive phasing point after the inter-transmission synthesis is performed.
Abstract:
There is provided an ultrasound imaging apparatus that can reduce vertical stripes even though a transmission interval is widened for high speed imaging. When a receiving unit 1201 receives an instruction to perform a high speed imaging mode, an aperture synthesizing unit 1300 adds a predetermined number (N) of phase outputs obtained from the reflected ultrasonic waves of individual transmission beams at the same received focal points to reduce the occurrence of stripes on an image. In order to generate N phase outputs at each of the received focal points, a control unit 401 finds a necessary number (M) of the reception scanning lines to be set by the reception beam former 603, and notifies the reception beam former 603 of the number.
Abstract:
Reception beamforming that does not generate discontinuity in the vicinity of the depth of a transmit focus is executed even if reception scanning lines are disposed outside of the irradiation area of a focusing-type transmission beam. The degree of discontinuity showing the discontinuity of reception signals detected by plural ultrasound elements 105 or the degree of discontinuity regarding the discontinuity of the wave fronts of phased signals is detected by a discontinuity extracting unit 113. If there is an area where the degree of discontinuity is larger than a predefined value, a delay time generating unit 114 for discontinuity elimination changes the delay times in the area where the discontinuity is generated.
Abstract:
A compact delay circuit that can dynamically change delay time is configured. A probe includes an analog memory unit that accumulates electric charges corresponding to a reflected wave of an ultrasonic wave produced by a difference between the acoustic impedances on a plurality of capacitors 303 and in turn outputs the electric charges accumulated on the capacitors 303 to an analog memory unit 205. In accumulating electric charges, when a control signal Ctls_l that increases delay time of the reflected wave is inputted, the analog memory unit 205 accumulates the same electric charges on two or more of the capacitors 303 for a preset period, or in outputting electric charges, when a control signal Ctlo_l is inputted, the analog memory unit 205 outputs the electric charges accumulated on one of the capacitors 303 for a preset period.
Abstract:
An ultrasonic probe includes a plurality of ultrasonic transducers. The ultrasonic probe is connected to a reception system circuit including at least one first delay adder circuit in which a predetermined number among the plurality of ultrasonic transducers is configured as one subarray and delaying and adding are performed in subarray units with respect to an ultrasonic wave reception signal that is acquired from the ultrasonic transducers included in the subarray, and a second delay adder circuit in which delaying and adding are performed with respect to the ultrasonic wave reception signal that is acquired from the ultrasonic transducers. The plurality of ultrasonic transducers include a first group which transmits the reception signal to the second delay adder circuit passing through the first delay adder circuit and a second group which transmits the reception signal directly to the second delay adder circuit without passing through the first delay adder circuit.