Abstract:
In order to improve B1 non-homogeneity while reducing a local SAR in an object, particularly, in a human tissue during MR imaging, the present invention is characterized in that each of a plurality of irradiation channels is controlled on the basis of RF shimming parameters corresponding to the plurality of irradiation channels, and, in a case of performing imaging sequence of irradiating an object with an RF magnetic field, there is the use of the RF shimming parameters obtained by imposing a constraint condition on at least one of a plurality of principal components obtained through principal component analysis on the RF shimming parameters.
Abstract:
There is provided an MRI apparatus in which, when a quantitative value, which does not depend on imaging parameter values, is computed from a plurality of image data having different pixel values that are acquired by performing imaging the plurality of times with different imaging parameter values in the same pulse sequence, pixel values which are acquired from the imaging parameter values are predicted for each of a plurality of predetermined quantitative-value candidate group, and an initial value of the quantitative value is selected from the quantitative-value candidate groups with reference to the predicted pixel values. The optimal quantitative value is computed through a localized optimization technique using the selected initial value.
Abstract:
When an electrical characteristic of a predetermined region of a subject placed in a static magnetic field space is measured by using magnetic resonance signals measured from the region, measurement data measured by coinciding direction of a tissue structure of the subject with the direction of the static magnetic field, and measurement data measured with a direction of the tissue structure of the subject crossing the direction of the static magnetic field are used. A rotating magnetic field map of the region is created from the measurement data, and the electrical characteristic is calculated by using the rotating magnetic field map. The electrical characteristic is calculated as an electrical characteristic including anisotropy by using information about the direction of tissue structure. According to the present invention, electrical characteristic such as electrical conductivity including anisotropy can be measured with good precision with an electrical characteristic measuring apparatus using nuclear magnetic resonance.
Abstract:
Provided is a technique that enables accurate SAR management using power consumption by an object (Pobject) that was calculated based on accurately acquired Q-factors. For this purpose, the present invention calculates Q-factors of each channel of a high-frequency antenna using measurement results of amplitudes of forward waves and reflected waves of each high-frequency signal between three or more different frequencies. An existing SAR monitor in an MRI apparatus is used for the amplitude measurement. Also, the Q-factors are calculated based on a circuit coefficient to be acquired by fitting the measurement results to a predetermined circuit model. Then, the power consumption by an object (Pobject) is calculated using the calculated Q-factors in order to manage the SAR.
Abstract:
In a magnetic resonance imaging device provided with a deformable RF coil permanently mounted on a patient table, the RF coil can constantly maintain a matching state and a tuned state in a state of being flat on a top plate and in a state of being wound around a test object. Coil-side connectors 306-2 and 306-3 provided in a deformable RF coil 300 form a detector in cooperation with any one of fixture-side connectors 506-1 to 506-6, in which the detector detects a fitted state therebetween. A tuning circuit and a matching circuit of coil elements of the RF coil 300 are switched by an output of the detector to change tuning and matching parameters, and to maintain a matching state and a tuned state with respect to a state change indicating that the RF coil 300 is in a wound state.
Abstract:
The estimation accuracy of a magnetic susceptibility value of tissue is improved by computing an edge image which represents the edge of the tissue on a magnetic susceptibility distribution and to reduce background noise without lowering the magnetic susceptibility value of the tissue. The present invention computes an absolute value image and a phase image from a complex image obtained by MRI, from the phase image, computes a low frequency region magnetic susceptibility image in which background noise is greater than a desired value, computes an edge information magnetic susceptibility image and computes a high frequency region magnetic susceptibility image, computes an edge mask from the edge information magnetic susceptibility image, smooths a magic angle region from the edge mask and the low frequency region magnetic susceptibility image and finally smooths a high frequency region using the high frequency region magnetic susceptibility image.