摘要:
An apparatus for measuring a thickness of an object transparent to light utilizing an interferometric method includes a light source for generating a coherent light beam to which an object to be measured is transparent, an illumination unit for radiating onto the object the incident light beam as scanned over a range of angle of incidence varying from a predetermined angle of incidence .theta..sub.A to another predetermined angle of incidence .theta..sub.B, and a photosensor unit for detecting light intensity changes resulting from changing of the optical path difference between two light beams reflected by the upper and lower surfaces of the object. A count circuit receives an output signal from the photosensor unit and counts the difference between an order of interference fringes obtained for one scan of incident light beam having the predetermined angle of incidence .theta..sub.A to that having the other predetermined angle of incidence .theta..sub.B, and a calculating circuit converts the output from the count circuit into a value corresponding to the thickness of the object.
摘要:
An optical system including a wave source radiates a converging wave to an object. A first memory stores a function g (x,y) representing the intensity distribution of the converging wave at a substantially beam waist section thereof. A scanning system directs the converging wave on the object at a substantially beam waist position, and operates so as to scan the converging wave on the object. A detector detects the intensity of a secondary wave generated by interaction between the converging wave and the object in accordance with a scanning operation of the scanning means. A second memory stores a positional function I (x,y) representing the intensity distribution of the secondary wave detected by the detector. In order to obtain a sensitivity distribution representing the intensity of the interaction between the object and the converging wave, an arithmetic unit obtains a function f (x,y) such that the function I(x,y) stored in the second memory satisfies convolution integration of the function g (x,y) stored in the first memory and the function f(x,y).