Abstract:
An aspect according to the invention provides a method of producing an optical transmission component in which peel-off and a bubble are not generated within a keeping temperature range in a bonding agent with which a space between an optical function portion and an end face of an optical transmission line is filled while a holder portion for holding the optical transmission line such as an optical fiber and the optical function portion such as a lens array are integrally molded. An optical function array is disposed across the space from a fiber holder, and the optical function array including lenses and a lower-side holder portion are integrally molded by a transparent resin. Fiber cores are placed in V-shape grooves of the lower-side holder portion, and an upper-side holder portion is put on the fiber cores. End faces of the fiber cores face the space, and the space is filled with the bonding agent. When a linear expansion coefficient of the bonding agent is smaller (or larger) than the linear expansion coefficient of the connection portion that connects the optical function array and the lower-side holder portion, the bonding agent is cured at an atmosphere temperature higher than an upper limit (or lower than a lower limit) of a keeping temperature of the optical transmission component.
Abstract:
An aspect according to the invention provides a method of producing an optical transmission component in which peel-off and a bubble are not generated within a keeping temperature range in a bonding agent with which a space between an optical function portion and an end face of an optical transmission line is filled while a holder portion for holding the optical transmission line such as an optical fiber and the optical function portion such as a lens array are integrally molded. An optical function array is disposed across the space from a fiber holder, and the optical function array including lenses and a lower-side holder portion are integrally molded by a transparent resin. Fiber cores are placed in V-shape grooves of the lower-side holder portion, and an upper-side holder portion is put on the fiber cores. End faces of the fiber cores face the space, and the space is filled with the bonding agent. When a linear expansion coefficient of the bonding agent is smaller (or larger) than the linear expansion coefficient of the connection portion that connects the optical function array and the lower-side holder portion, the bonding agent is cured at an atmosphere temperature higher than an upper limit (or lower than a lower limit) of a keeping temperature of the optical transmission component.
Abstract:
A lens 39 is molded in one of the surfaces of a support plate 33, and a lens is molded in one of the surfaces of a support plate 35. The support plate 33 is integrated with the support plate 35 with a filter 34 sandwiched between the other surfaces of the support plates 33 and 35. In the support plates 33 and 35, seal portions 38 and 40 are formed to have a height larger than a lens thickness, so as to surround lenses 39 and 41. A spacer 31 is bonded to the seal portion 38 of the support plate 33 with an adhesive agent, and a spacer 37 is bonded to the seal portion 40 of the support plate 35 with an adhesive agent. To both end faces of the optical multiplexer/demultiplexer 301 thus formed, fiber arrays 42 and 43 are coupled respectively to form an optical multiplexing/demultiplexing module 401.