Abstract:
A drive controller of an operating machine configured to drive a structure by a hydraulic motor and an electric motor includes: a remote control valve configured to determine the operation amount of the structure; an electric motor torque calculation portion configured to calculate torque of the electric motor; a hydraulic motor torque calculation portion configured to calculate torque of the hydraulic motor; a controller configured to transmit an opening position control signal to the control valve based on the operation amount determined by the remote control valve such that torque necessary to drive the structure is obtained from the torque of the electric motor and the torque of the hydraulic motor; and solenoid-operated reducing valves and each configured to reduce a pilot pressure, to be applied to the control valve, based on the opening position control signal output from the controller.
Abstract:
A processing part inputs a behavior description code in which a write access array to be accessed to write and a read access array to be accessed to read are used. The processing part analyzes the behavior description code, and determines an order of using each write access address and an order of using each read access address when the behavior description code is executed. Further, the processing part performs either one of a write access order changing process to change the order of using the write access addresses when the behavior description code is executed based on the order of using the read access addresses and a read access order changing process to change the order of using the read access addresses when the behavior description code is executed based on the order of using the write access addresses.
Abstract:
A power switch and connector that are conventionally included in a body are formed in spaces created at the outer ends of the shafts of hinges other than the body and a display, whereby the body is thinned. Electronic device comprises a body, a display, and a hinge that joins the body and display so that they can be freely opened or closed. A power switch is formed at an end of the shaft of the hinge. Furthermore, the electronic device comprises the body, the display, and another hinge that joins the body and display so that they can be freely opened or closed. A port of a connector opens at an end of the shaft of the hinge.
Abstract:
An image capturing apparatus includes a camera body having an image-capturing lens for receiving light to form an image of a subject and a display unit having a display screen for displaying the image. The display unit is slidably supported by the camera body. A surface of the display unit opposite a surface having the display screen disposed thereon faces a surface of the camera body opposite a surface having the image-capturing lens disposed thereon. An image capture button is disposed on the surface of the camera body opposite the surface having the image-capturing lens disposed thereon. The image capture button is exposed when the display unit is slid over the camera body in a first direction and the image capture button is covered by the display unit when the display unit is slid over the camera body in a second direction opposite the first direction.
Abstract:
An aspect according to the invention provides a method of producing an optical transmission component in which peel-off and a bubble are not generated within a keeping temperature range in a bonding agent with which a space between an optical function portion and an end face of an optical transmission line is filled while a holder portion for holding the optical transmission line such as an optical fiber and the optical function portion such as a lens array are integrally molded. An optical function array is disposed across the space from a fiber holder, and the optical function array including lenses and a lower-side holder portion are integrally molded by a transparent resin. Fiber cores are placed in V-shape grooves of the lower-side holder portion, and an upper-side holder portion is put on the fiber cores. End faces of the fiber cores face the space, and the space is filled with the bonding agent. When a linear expansion coefficient of the bonding agent is smaller (or larger) than the linear expansion coefficient of the connection portion that connects the optical function array and the lower-side holder portion, the bonding agent is cured at an atmosphere temperature higher than an upper limit (or lower than a lower limit) of a keeping temperature of the optical transmission component.
Abstract:
To decrease an insertion loss by shortening an optical path length between an input side optical fiber and an output side optical fiber, and to decrease a stroke of a drive component. Input side optical fibers and a preliminary optical fiber arranged in parallel to one another and output side optical fibers arranged in parallel to one another are arranged in two stages, and a fixed prism 14 is arranged to be opposite to end surfaces of these. A preliminary optical fiber prism 15b is provided on one oblique surface of the fixed prism 14 to be opposite to a preliminary optical fiber 20, and a driven prism 15a can be made to come in contact with and separated from the one oblique surface of the fixed prism 14, and the driven prism 15a can be moved along the input side optical fibers. At a position where the driven prism 15a comes in contact with the oblique surface of the fixed prism 14, outgoing light from the input side optical fiber is not totally reflected at the oblique surface of the fixed prism 14, but is incident on the driven prism 15a, and after it is sent from the driven prism 15a to the preliminary optical fiber prism 15b, it is incident on the preliminary optical fiber 20 from the preliminary optical fiber prism 15b.
Abstract:
An anti-reaction valve device is configured to open such that a plunger and a sheet member move away from each other in association with first and second set difference pressures. Two anti-reaction valve devices are provided between two pipes fluidically connected to a hydraulically powered actuator such that directional relationship of connection of primary and secondary ports is reversed between the two anti-reaction valve devices so that a reaction of the actuator is inhibited quickly and reliably. A one-way valve means is positioned between the secondary port and an open and close control chamber within which the plunger and the sheet member are movable into contact with and away from each other and serves to inhibit a back flow of a hydraulic fluid. The one-way valve means is capable of inhibiting the plunger and the sheet member from moving away from each other undesirably, and hence malfunction of the anti-reaction valve devices.
Abstract:
The present invention provides a hydraulic circuit for a crane wherein a switching valve is provided between a plurality of motor circuits connected in series within the same actuator group, and at the time of simultaneous operation of the motor circuits, the switching valve is switched from a first position to a second position whereby the series connection between the motor circuits is cut off, and they are driven by each of separate hydraulic sources, thereby enabling prevention of pressure interference at the time of simultaneous operation of the motor circuits within the same actuator group without increasing hydraulic sources.
Abstract:
In drive control of an operating machine configured to drive a structure by a hydraulic motor configured to be driven by operating oil supplied from a hydraulic pump an electric motor configured to cooperate with the hydraulic motor, a speed command generated based on a manipulation amount of a remote control valve configured to determine an operation amount of the structure is subjected to speed feedback control performed based on the actual rotation speed of the hydraulic motor and pressure difference feedback control performed based on an operating oil pressure difference between a suction port and discharge port of the hydraulic motor. With this, a tilting angle command is generated such that the operating oil, the amount of which is necessary at the actual rotation speed of the hydraulic motor, is ejected, and the tilting angle of the hydraulic pump is controlled.
Abstract:
In drive control of an operating machine configured to drive a structure by a hydraulic motor configured to be driven by operating oil supplied from a hydraulic pump an electric motor configured to cooperate with the hydraulic motor, a speed command generated based on a manipulation amount of a remote control valve configured to determine an operation amount of the structure is subjected to speed feedback control performed based on the actual rotation speed of the hydraulic motor and pressure difference feedback control performed based on an operating oil pressure difference between a suction port and discharge port of the hydraulic motor. With this, a tilting angle command is generated such that the operating oil, the amount of which is necessary at the actual rotation speed of the hydraulic motor, is ejected, and the tilting angle of the hydraulic pump is controlled.