Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for controlling a building management system are described herein. One method includes authenticating a user for access to a plurality of building management system (BMS) applications. The authentication can include determining an identity of the user, determining access rights of the user, and determining a location of the user. The method can include receiving building data from the user associated with at least one of the number of BMS applications that changes a building parameter. The method can include changing the building parameter based on the identity, the access rights, and the location of the user and the received building data
Abstract:
An approach for monetizing performance of building system equipment such as HVAC equipment. Expected and actual performance curves may be obtained for the HVAC equipment. Differences between the curves may indicate energy consumption. The energy consumption may be monetized. The monetizing may be of degradation that occurs when the equipment deteriorates, incurs a fault or has a loss of performance as accrued over time. Monetizing may incorporate maintenance and capital risk exposure. The monetizing may be a conversion of analyses of the equipment to money in real time. Performance monitoring of the equipment may incorporate predictive trending which may lead to fault prognosis and preventative maintenance. Automation of the conversion may result in immediate information and feedback to customers. The information may be stored for historical purposes and future analyses.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.
Abstract:
Devices, methods, and systems for distributed rule based automated fault detection are described herein. One system includes a data extractor engine configured to: extract configuration data relating to an environment based on a number of defined rules, and receive monitored data relating to the environment, an AFD engine configured to evaluate the monitored data in view of the configuration data to determine a state of the environment, and a fault generation engine to determine whether the state of the environment is outside a range defined by the number of defined rules.