Abstract:
Methods and systems are disclosed herein for accurately calculating battery consumption in a wireless field device. The total current consumed by a radio board associated with a wireless field device can be determined based on the sum of the current consumed as a result of particular events occurring at the radio board. The current consumed by a sensor board of the wireless field device can then be averated with respect to particular type of sensor. The current consumed by the radio board and the current consumed by the sensor board in the wireless field device can be combined to calculate a predictive value indicative of a remaining life of a battery associated with the wireless field device.
Abstract:
A method for use by a first device associated with a redundant second device includes issuing a synchronization request to a file system of the first device. The file system is configured to cache changes associated with a memory space of an application, the synchronization request causing the file system to send the cached changes to a driver of the first device The driver is used to commit the cached changes to a copy of the memory space of the application in order to cause the copy of the memory space of the application to match the memory space of the application. One or more changes made to the copy of the memory space of the application caused by committing the cached changes are identified. A change set identifying the one or more changes being made to the copy of the memory space of the application is created in a buffer and the change set transmitted from the buffer to the second device in order to synchronize an additional copy of the memory space of the application at the second device.
Abstract:
A method of fault-tolerant process control includes providing a network process control system in an industrial processing facility (IPF) including a plant-wide network coupling a server to computing platforms each including computing hardware and memory hosting a software application for simultaneously supporting a process controller and another process controller or an I/O gateway. The computing platforms are coupled together by a private path redundancy network for providing a hardware resource pool. At least some of the computing platforms are directly coupled by an I/O mesh network to a plurality of I/O devices to field devices that are coupled to processing equipment. Upon detecting at least one failing device in the hardware resource pool, over the private path redundancy network a backup is placed into service for the failing device from the another process controller or I/O gateway that is at another of the computing platforms in the hardware resource pool.
Abstract:
A method for use by a first device associated with a redundant second device includes issuing a synchronization request to a file system of the first device. The file system is configured to cache changes associated with a memory space of an application, the synchronization request causing the file system to send the cached changes to a driver of the first device The driver is used to commit the cached changes to a copy of the memory space of the application in order to cause the copy of the memory space of the application to match the memory space of the application. One or more changes made to the copy of the memory space of the application caused by committing the cached changes are identified. A change set identifying the one or more changes being made to the copy of the memory space of the application is created in a buffer and the change set transmitted from the buffer to the second device in order to synchronize an additional copy of the memory space of the application at the second device.
Abstract:
Methods and systems are disclosed herein for accurately calculating battery consumption in a wireless field device. The total current consumed by a radio board associated with a wireless field device can be determined based on the sum of the current consumed as a result of particular events occurring at the radio board. The current consumed by a sensor board of the wireless field device can then be averated with respect to particular type of sensor. The current consumed by the radio board and the current consumed by the sensor board in the wireless field device can be combined to calculate a predictive value indicative of a remaining life of a battery associated with the wireless field device.
Abstract:
Methods and systems for synchronizing controllers in an automation control system, can involve arranging redundancy elements in an automation control system comprising a group of nodes, wherein the redundancy elements can include one or more primary controllers and a group of concurrent secondary controllers, and wherein a back-up to the primary controller can exist on any node. Such methods and systems can further involve backing-up of the primary controller by the one or more secondary controllers to allow the primary controller to maintain the one or more secondary controllers as a new, alternate secondary controller for a load balancing or an equipment update
Abstract:
A method for bandwidth management in a wireless network having wireless field devices (FDs) wirelessly coupled to a wireless access point associated to a wireless gateway. A first bandwidth usage percentage (BUP) consumed by the wireless access point and wireless router(s) is calculated from summed connected device weights. In response to a new FD or wireless router requesting to be connected to the network, a second BUP is calculated that would be consumed by the wireless access point and the wireless router(s) if the new FD or wireless router were connected to the wireless network. If the second BUP is not less than respective BUP thresholds, the new FD or router is prevented from being connected to the network. Disclosed bandwidth management can also be applied if an already connected FD in the network changes its path from one router or access point to another connected router or access point.
Abstract:
Methods and systems for synchronizing controllers in an automation control system, can involve arranging redundancy elements in an automation control system comprising a group of nodes, wherein the redundancy elements can include one or more primary controllers and a group of concurrent secondary controllers, and wherein a back-up to the primary controller can exist on any node. Such methods and systems can further involve backing-up of the primary controller by the one or more secondary controllers to allow the primary controller to maintain the one or more secondary controllers as a new, alternate secondary controller for a load balancing or an equipment update.
Abstract:
A method of fault-tolerant process control includes providing a network process control system in an industrial processing facility (IPF) including a plant-wide network coupling a server to computing platforms each including computing hardware and memory hosting a software application for simultaneously supporting a process controller and another process controller or an I/O gateway. The computing platforms are coupled together by a private path redundancy network for providing a hardware resource pool. At least some of the computing platforms are directly coupled by an I/O mesh network to a plurality of I/O devices to field devices that are coupled to processing equipment. Upon detecting at least one failing device in the hardware resource pool, over the private path redundancy network a backup is placed into service for the failing device from the another process controller or I/O gateway that is at another of the computing platforms in the hardware resource pool.