Abstract:
Systems and methods for resonance switching RFOGs with feed-forward processing are provided. In one embodiment, a system comprises: a fiber optic resonator; first and second laser sources coupled to the resonator, wherein the first source launches a first beam into the resonator and the second source launches a second beam into the resonator in an opposite direction; a first servo loop that locks the first beam to a first resonant mode of the resonator during a first state and to a second resonant mode of the resonator during a second state; a second servo loop that locks the second beam to the second resonant mode during the first state and to the first resonant mode during the second state; a feed-forward rate processor coupled to the servo loops that calculates a FSR average across a prior resonance switching cycle of resonant frequency measurements and applies the average to current measurements.
Abstract:
A method of measuring beat frequency comprises modulating a first optical signal and a second optical signal, wherein the first modulated optical signal includes a first carrier frequency and a first plurality of sideband frequencies and the second modulated optical signal includes a second carrier frequency and a second plurality of sideband frequencies. The method also comprises combining a fraction of the first modulated optical signal with a fraction of the second modulated optical signal into a combined signal and determining a carrier beat frequency. The method further comprises selecting a frequency range from the combined signal; performing a fast Fourier transform (FFT) on an electrical signal representing the selected frequency range; tracking the carrier beat frequency based on the FFT; and outputting a rate signal based on the tracked carrier beat frequency, the rate signal indicating a rotation rate of the resonator fiber optic gyroscope.
Abstract:
A RFOG, comprising: a master laser emitting a reference optical signal; first and second slave lasers emitting first and second optical signals; an optical resonator ring cavity coupled to the lasers, the first and second optical signals propagating in first and second directions through the optical resonator ring cavity; one or more signal generators to inject first and second modulation signals at first and second frequencies on both optical signals; first and second photodetectors that generate first and second signals; first and second demodulators to demodulate the first and second signals using first and second reference signals and the first and second frequencies; a differencing function to output the difference between resonance frequencies of the first and second signals; at least a third demodulator to detect reference phase errors; and at least one phase servo to adjust the phase of at least one of the first and second reference signals.
Abstract:
A RFOG, comprising: a master laser emitting a reference optical signal; first and second slave lasers emitting first and second optical signals; an optical resonator ring cavity coupled to the lasers, the first and second optical signals propagating in first and second directions through the optical resonator ring cavity; one or more signal generators to inject first and second modulation signals at first and second frequencies on both optical signals; first and second photodetectors that generate first and second signals; first and second demodulators to demodulate the first and second signals using first and second reference signals and the first and second frequencies; a differencing function to output the difference between resonance frequencies of the first and second signals; at least a third demodulator to detect reference phase errors; and at least one phase servo to adjust the phase of at least one of the first and second reference signals.
Abstract:
Systems and methods for resonance switching RFOGs with feed-forward processing are provided. In one embodiment, a system comprises: a fiber optic resonator; first and second laser sources coupled to the resonator, wherein the first source launches a first beam into the resonator and the second source launches a second beam into the resonator in an opposite direction; a first servo loop that locks the first beam to a first resonant mode of the resonator during a first state and to a second resonant mode of the resonator during a second state; a second servo loop that locks the second beam to the second resonant mode during the first state and to the first resonant mode during the second state; a feed-forward rate processor coupled to the servo loops that calculates a FSR average across a prior resonance switching cycle of resonant frequency measurements and applies the average to current measurements.
Abstract:
A method of measuring beat frequency comprises modulating a first optical signal and a second optical signal, wherein the first modulated optical signal includes a first carrier frequency and a first plurality of sideband frequencies and the second modulated optical signal includes a second carrier frequency and a second plurality of sideband frequencies. The method also comprises combining a fraction of the first modulated optical signal with a fraction of the second modulated optical signal into a combined signal and determining a carrier beat frequency. The method further comprises selecting a frequency range from the combined signal; performing a fast Fourier transform (FFT) on an electrical signal representing the selected frequency range; tracking the carrier beat frequency based on the FFT; and outputting a rate signal based on the tracked carrier beat frequency, the rate signal indicating a rotation rate of the resonator fiber optic gyroscope.