Abstract:
Provided is an object recognition system. The object recognition system recognizes an object in an ROI of a source image. The object recognition system includes an image change unit and an ROI detection unit. The image change unit receives the source image, and changes the object into an edge image which is represented as an edge line. The ROI detection unit divides the edge image into a plurality of regions, compares a total sum of edge component values of an edge line included in each of the regions and a predetermined threshold value by regions, and detects a region, in which the total sum of edge component values is greater than the threshold value, as the ROI from among the plurality of regions.
Abstract:
The present disclosure provides a single-quantum dot device and a method of manufacturing the same. A transparent dielectric thin film is formed on a cover layer and an energy band of quantum dots is adjusted based on compressive stress due to difference in coefficient of thermal expansion therebetween. Specifically, the dielectric thin film has a lower coefficient of thermal expansion than the cover layer and compressive stress is applied to the cover layer by radiation of laser beams. Then, the quantum dots undergo compressive stress and the energy band of the quantum dots increases with increasing intensity of the laser beams.
Abstract:
Disclosed are a method for fabricating a quantum dot. The method includes the steps of (a) preparing a compound semiconductor layer including a quantum well structure formed by sequentially stacking a first barrier layer, a well layer and a second barrier layer; (b) forming a dielectric thin film pattern including a first dielectric thin film having a thermal expansion coefficient higher than a thermal expansion coefficient of the second barrier layer and a second dielectric thin film having a thermal expansion coefficient lower than the thermal expansion coefficient of the second barrier layer on the second barrier layer; and (c) heat-treating the compound semiconductor layer formed thereon with the dielectric thin film pattern to cause an intermixing between elements of the well layer and elements of the barrier layers at a region of the compound semiconductor layer under the second dielectric thin film.