Abstract:
A three-dimensional (3D) image display apparatus and method are provided. The 3D image display apparatus includes an image generating unit configured to generate an image, an active optical device configured to change a propagation path of light containing the generated image, and provide the generated image to multiple viewpoints that are located along a first direction parallel to the image generating unit, and a varifocal lens configured to vary a focal position of the generated image along a second direction away from the image generating unit.
Abstract:
A changeable liquid prism array and a method of manufacturing the changeable liquid prism array are provided. The changeable liquid prism array includes a substrate, a wiring layer formed on the substrate, and including conducting wire portions and non-conducting wire portions where the conducting wire portions are not formed, and barrier walls disposed on the wiring layer. The changeable liquid prism array further includes cells defined by the barrier walls, a first liquid included in the cells, and a second liquid located on the first liquid. The changeable liquid prism array further includes side electrodes disposed on side surfaces of the barrier walls, and separated from each other by spaces corresponding to the non-conducting wire portions, and an upper electrode arranged above the barrier walls, and separated from the side electrodes.
Abstract:
A three-dimensional (3D) image display apparatus that includes a surface-light source device for emitting light in a direction which may be sequentially adjusted, is provided. The 3D image display apparatus includes a display panel for generating images by modulating the light emitted from the surface-light source device according to image information. The 3D image display apparatus also includes a controller for controlling the directivity adjustment of the light from the surface-light source device in a time-sequential manner and the image formation for each visual field of the display panel to be synchronized with each other.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.
Abstract:
A three-dimensional (3D) display apparatus and methods of displaying 3D images are provided. A 3D display apparatus includes a light source, a display unit, an active optical device for changing a travel path of light, and a plurality of projection optical systems.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.
Abstract:
An apparatus for displaying a 3-dimensional (3D) image, which is capable of providing a super multi-view, is provided. The apparatus includes: at least one image projector for projecting light including an image; an active optical element for adjusting a path of at least one light within a range of a predetermined angle; and a relay optical system for transmitting the at least one light to a pupil of a viewer. The apparatus provides a plurality of images in different views to the pupil using a time division method, by using the active optical element for adjusting the path of the at least one light.
Abstract:
An all-in-one light guide plate, a backlight apparatus employing the same, and a method of manufacturing the all-in-one light guide plate are provided. The all-in-one light guide plate has a structure in which a plurality of protrusion type refractive elements for outputting light are integrated into the light guide member. It is possible to improve optical properties by more densely arranging the refractive elements with distance from the light source.
Abstract:
A monolithic ink-jet printhead includes a substrate having a lower ink chamber formed on an upper surface thereof, a manifold for supplying ink to the lower ink chamber formed on a bottom surface thereof, and an ink channel providing communication therebetween; a nozzle plate having a plurality of passivation layers and a metal layer sequentially stacked on the substrate, the nozzle plate having an upper ink chamber formed therein on a bottom surface of the metal layer, a nozzle in communication with the upper ink chamber formed on an upper surface of the metal layer, and a connection hole providing communication between the upper ink chamber and the lower ink chamber; a heater located between the upper ink chamber and the lower ink chamber for heating ink contained in the lower and upper ink chambers; and a conductor electrically connected to the heater to apply a current to the heater.
Abstract:
A monolithic ink-jet printhead includes a substrate having an ink chamber, a manifold, and an ink channel in flow communication, a nozzle plate including a plurality of passivation layers stacked on the substrate and a heat dissipating layer stacked on the passivation layers, a nozzle for ejecting ink penetrating the nozzle plate, a heater provided between adjacent passivation layers above the ink chamber, and a conductor between adjacent passivation layers, the conductor being electrically connected to the heater, wherein the heat dissipating layer is made of a thermally conductive metal for dissipating heat from the heater, the lower part of the nozzle is formed by penetrating the plurality of passivation layers, and the upper part of the nozzle is formed by penetrating the heat dissipating layer in a tapered shape in which a cross-sectional area thereof decreases gradually toward an exit thereof.