摘要:
Reinforced directional drilling assemblies and methods of forming reinforced directional drilling assemblies are provided. Strengthening materials may be incorporated into a resilient layer and/or a polymer-based composite material within a directional drilling assembly to improve the durability and performance of a power section within the directional drilling assembly. Inclusion of strengthening materials within a directional drilling assembly may provide a method to detect the status of a power section and send a signal from downhole upon detecting status of the power section. Inclusion of strengthening materials also may provide a method to collect data about operating conditions, including pressure, temperature, torque, RPM, stress level, shock, vibration, downhole weight on bit, and/or equivalent circulating density to send to the surface or to MWD/LWD systems. The strengthening materials may collect data by themselves or in conjunction with a sensor.
摘要:
Reinforced directional drilling assemblies and methods of forming reinforced directional drilling assemblies are provided. Strengthening materials may be incorporated into a resilient layer and/or a polymer-based composite material within a directional drilling assembly to improve the durability and performance of a power section within the directional drilling assembly. Inclusion of strengthening materials within a directional drilling assembly may provide a method to detect the status of a power section and send a signal from downhole upon detecting status of the power section. Inclusion of strengthening materials also may provide a method to collect data about operating conditions, including pressure, temperature, torque, RPM, stress level, shock, vibration, downhole weight on bit, and/or equivalent circulating density to send to the surface or to MWD/LWD systems. The strengthening materials may collect data by themselves or in conjunction with a sensor.
摘要:
Methods for improving adhesion or bonding between materials used in forming components of directional drilling assemblies, such as rotors and stators, are provided. A surface of a component may be treated, such as through cleaning, etching and/or activating a surface. The use of plasma treatment may enhance the adhesion between the surfaces and/or materials to be bonded, thereby reducing the degradation or mechanical failure of these materials in oilfield applications.
摘要:
The present invention recites a method of fabricating a stator for a downhole motor, the method comprising the steps of providing a stator tube having an interior surface and applying a bonding agent to the interior surface of the stator tube. Additionally, a mandrel is positioned within the stator tube, the mandrel having an outer geometry that is complimentary to a desired inner geometry for the stator. Furthermore, a reinforcing material is introduced into the stator tube to fill space between the mandrel and the interior surface of the stator tube and subsequently solidified to bond the reinforcing material to the interior surface of the stator tube, The mandrel is then removed from the bonded stator tube and reinforcing material such that a stator is fabricated.
摘要:
A Moineau device includes a stator that interfaces to a rotor whereby fluid flows through cavities between the stator and rotor that progress axially as the rotor is rotated relative to the stator. At least one of the stator and the rotor is realized from a nanocomposite that includes a polymeric matrix with carbon nanotubes dispersed therein.
摘要:
Exemplary embodiments provide a progressive cavity pump or motor including a stator having a longitudinal bore and a rotor rotatably disposed within the longitudinal bore of the stator. The rotor includes a rotor core and a resilient outer layer formed of a resilient material bonded onto the outer surface of the rotor core. The resilient outer layer sealably connects the helical configurations on the outer surfaces of the rotor and the stator as the rotor rotates within the longitudinal bore of the stator.
摘要:
The present invention recites a method of fabricating a stator for a downhole motor, the method comprising the steps of providing a stator tube having an interior surface and applying a bonding agent to the interior surface of the stator tube. Additionally, a mandrel is positioned within the stator tube, the mandrel having an outer geometry that is complimentary to a desired inner geometry for the stator. Furthermore, a reinforcing material is introduced into the stator tube to fill space between the mandrel and the interior surface of the stator tube and subsequently solidified to bond the reinforcing material to the interior surface of the stator tube, The mandrel is then removed from the bonded stator tube and reinforcing material such that a stator is fabricated.
摘要:
The present application discloses a progressive cavity motor or pump component, either stator or rotor, which provides a high glass transition temperature polymeric surface on the component which becomes resilient at or below the expected operating temperature of the motor or pump, but which remains solid at ambient temperatures, along with a method of fabricating either a stator or a rotor with such surface characteristics. Since the surface becomes resilient, the progressive cavity pump operates efficiently at temperatures above the glass transition temperature of the selected polymeric surface.
摘要:
A progressing cavity rotor facilitates pumping applications in progressing cavity pumping systems by ensuring a desired shape of the rotor. A resilient layer is placed over a rotor core to create a composite progressing cavity pump system rotor. Generally, the rotor core is formed from a harder material, such as a metallic material. Additionally, the composite rotor is placed in a mold and subjected to a molding treatment designed to enhance bonding of the resilient layer and formation of a desired exterior surface shape of the resilient layer.
摘要:
Cast material rotor (200,300,500,800) with profiled helical outer surface (208,308,508,808). Cast material layer (502,802) can be disposed between core (504,804) and tube (506,806). Profiled helical outer surface (208,308) can be in tube 206 or cast material layer 302, respectively. Method of forming rotor 200 can include filling void between outer surface 212 of core 204 and longitudinal bore 210 of tube 206 having profiled helical outer surface 208 with cast material 202 in fluid state, and solidifying cast material 202. Tube 206 can be disposed within profiled helical bore 714 of mold 700, e.g., before solidifying cast material 202. Method of forming rotor 300 can include filling void between outer surface 312 of core 304 and profiled helical bore 714 in mold 700 with cast material 302 in fluid state, solidifying cast material 302 to impart profiled helical outer surface 308 thereto, and removing mold 700 from cast material 302.