摘要:
A communications receiver and method are provided for receiving a transmitted signal from a transmission channel having a low-pass filter characteristic. The receiver includes a receiver input for coupling to the channel and a switched capacitor pre-emphasis filter coupled to the receiver input. An analog-to-digital (A/D) converter is coupled to an output of the pre-emphasis filter. An equalizer is coupled to an output of the analog-to-digital converter.
摘要:
An adaptive equalizer for use in a communication receiver that prevents equalizer operation divergence in response to slicer errors in a high noise communication application. The equalizer uses the difference between an equalized sample value and the nearest constellation point determined by the slicer both as the equalizer adaptation value and as a control value to selectively enable or minimize (disable) adaptation modifications. The difference is compared to a threshold value to determine whether the difference should be applied to the equalizer for adaptation purposes or a minimal value to prevent equalizer divergence in response to significant slicer errors. The threshold value is determined as a function of the ratio of the probability of correct slicer determinations and the probability of incorrect slicer determinations for a given sample value and a given signal to noise ratio. The threshold value may be predetermined as a constant for a particular communication application or may be dynamically computed as communications proceed.
摘要:
A method and apparatus for recovering at least one signal of interest are provided. The method includes receiving an overall signal, the overall signal including the at least one signal of interest and a plurality of other signals, identifying at least one of the strongest components of the plurality of other signals, attenuating, using at least one MEMS resonator, any of the components identified by the identifying, wherein the overall signal will be modified to include the at least one signal of interest, attenuated versions of the components identified by the identifying, and the remaining portions of the plurality of other signals that were not subject to the attenuating, and recovering, after the attenuating, the at least one signal of interest.
摘要:
An inexpensive synchronous detection module is disclosed for a sideband signal receiver that provides for flexibility in design of the tuner. The detection module is adaptable to detection of upper or lower sideband signals. One embodiment includes an analog-to-digital converter, a Hilbert transform filter, a sideband selection switch, a complex multiplier, a carrier recovery. loop, a matched filter, and a decimator. The analog-to-digital converter oversamples an intermediate frequency (IF) signal from the tuner, and the Hilbert transform filter generates a Hilbert transform of the digital IF signal. An analytic IF signal can be generated from the digital IF signal by multiplying the Hilbert transform of the digital IF signal by j(=sqrt(−1)), and adding the resulting imaginary-valued signal to the digital IF signal. The sideband selection switch can “flip” the analytic IF signal by inverting the imaginary-valued signal. The complex multiplier multiplies the analytic IF signal by a complex-value sinusoid to shift the analytic IF signal to baseband. The resulting analytic baseband signal is match filtered and decimated to form a baseband double sideband signal with one sample per symbol period. The carrier recovery loop operates on the imaginary part of the analytic baseband signal to generate the complex sinusoid that shifts the analytic IF signal to baseband.
摘要:
A method and apparatus for recovering at least one signal of interest are provided. The method includes receiving an overall signal, the overall signal including the at least one signal of interest and a plurality of other signals, identifying at least one of the strongest components of the plurality of other signals, attenuating, using at least one MEMS resonator, any of the components identified by the identifying, wherein the overall signal will be modified to include the at least one signal of interest, attenuated versions of the components identified by the identifying, and the remaining portions of the plurality of other signals that were not subject to the attenuating, and recovering, after the attenuating, the at least one signal of interest.