Abstract:
A manufacturing method is provided for a resonance device that includes preparing a collective board including first power supply terminals electrically connected to upper electrodes of a plurality of resonators, and a first coupling wire that electrically connects two or more of the first power supply terminals. The method includes dividing the collective board into a plurality of resonance devices. Moreover, the first power supply terminals include a first metal layer and a second metal layer covering the first metal layer. The first coupling wire includes a portion of the first metal layer that extends from a region covered with the second metal layer. The method further includes removing the portion of the first metal layer extending from the region covered with the second metal layer before the dividing the collective board into the plurality of resonance devices.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
Abstract:
A continuous or distributed resonator geometry is defined such that the fabrication process used to form a spring mechanism also forms an effective mass of the resonator structure. Proportional design of the spring mechanism and/or mass element geometries in relation to the fabrication process allows for compensation of process-tolerance-induced fabrication variances. As a result, a resonator having increased frequency accuracy is achieved.
Abstract:
A radio frequency (RF) MEMS resonator is embedded in an active positive feedback loop to form a tunable RF channel-selecting radio transceiver employing a super-regenerative reception scheme. This transceiver harnesses the exceptionally high Q (around 100,000) and voltage-controlled frequency tuning of a resonator structure to enable selection of any one of among twenty 1 kHz wide RF channels over an 80 kHz range, while rejecting adjacent channels and consuming
Abstract:
A resonant device with piezoresistive detection includes a resonator connected elastically to the support of the device. The device includes: a support; a suspended resonator, which moves parallel to the plane of the support; means for actuating the resonator; and means for detecting the movement, including at least one piezoresistive gauge. The resonator is anchored to the support through at least one flexurally elastic element, to enable the threshold where a non-linear displacement regime appears to be raised. The device can be manufactured by a surface technology, and applies notably to resonant mass sensors.
Abstract:
A method for fabrication of single crystal silicon micromechanical resonators using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, a capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; viewing windows are opened in the active layer of the resonator wafer; masking the single crystal silicon semiconductor material active layer of the resonator wafer with photoresist material; a single crystal silicon resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist material is subsequently dry stripped.
Abstract:
A MEMS array structure including a plurality of bulk mode resonators may include at least one resonator coupling section disposed between the plurality of bulk mode resonators. The plurality of resonators may oscillate by expansion and/or contraction in at least one direction/dimension. The MEMS array structure may include a plurality of sense electrodes and drive electrodes spaced apart from the plurality of bulk mode resonators by a gap. Each of at least one of the plurality of bulk mode resonators may be mechanically coupled to a substrate via or approximately at a respective at least one nodal point.
Abstract:
This disclosure provides implementations of electromechanical systems resonator structures, devices, apparatus, systems, and related processes. In one aspect, a sacrificial layer is deposited on an insulating substrate. A lower electrode layer is formed proximate the sacrificial layer. A piezoelectric layer is deposited on the lower electrode layer. An upper electrode layer is formed on the piezoelectric layer. At least a portion of the sacrificial layer is removed to define a cavity such that at least a portion of the lower electrode layer is spaced apart from the insulating substrate.
Abstract:
The invention relates to a MEMS resonator comprising a first electrode, a movable element (48) comprising a second electrode, the movable element (48) at least being movable towards the first electrode, the first electrode and the movable element (48) being separated by a gap (46, 47) having sidewalls. According to the invention, the MEMS resonator is characterized in that the gap (46, 47) has been provided with a dielectric layer (60) on at least one of the sidewalls.
Abstract:
Each one of resonators arranged in an N×M MEMS array structure includes substantially straight elongated beam sections connected by curved/rounded sections and is mechanically coupled to at least one adjacent resonator of the array via a coupling section, each elongated beam section connected to another elongated beam section at a distal end via the curved/rounded sections forming a geometric shape (e.g., a rounded square), and the coupling sections disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at substantially the same frequency, in combined elongating/breathing and bending modes, i.e., beam sections exhibiting elongating/breathing-like and bending-like motions. One or more of the array structure's resonators may include one or more nodal points (i.e., that are substantially stationary and/or experience little movement), which are suitable and/or preferable locations to anchor the resonator/array to the substrate, in one or more areas of the structure's curved sections.