摘要:
An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
摘要:
An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
摘要:
An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
摘要:
An apparatus and method for improved S/N measurements useful for electron paramagnetic resonance imaging in situ and in vivo, using high-isolation transmit/receive surface coils and temporally spaced pulses of RF energy (e.g., in some embodiments, a RF pi pulse) having an amplitude sufficient to rotate the magnetization by 180 degrees followed after varied delays, by a second RF pulse having an amplitude half that of the initial pulse to rotate the magnetization by, e.g., 90 degrees (a pi/2 pulse), to the plane orthogonal to the static field where it evolves for a short time. Then a third RF pi pulse sufficient to rotate the magnetization by, e.g., 180 degrees, forms an echo (in some embodiments, the second and third pulses are from the same signal as the first pulse but are phase shifted by 0, 90, 180, or 270 degrees to reduce signal artifact), to image human body.
摘要:
Techniques provide for passive Q switching in a bimodal resonator environment, where magnetic resonators are coupled for power transfer. A passive Q switch is responsive to a driving power from one magnetic resonator coupled to another magnetic resonator. After the driving power reaches a threshold, the passive Q switch shunts the receiving magnetic resonator, at least partially, to reduce the Q of that second resonator, which allows faster detection operation of the second resonator in some applications. The technique allows for fast Q switching in a bimodal resonator system, especially one having resonators having magnetic fields that are orthogonal to one another.
摘要:
Techniques provide for passive Q switching in a bimodal resonator environment, where magnetic resonators are coupled for power transfer. A passive Q switch is responsive to a driving power from one magnetic resonator coupled to another magnetic resonator. After the driving power reaches a threshold, the passive Q switch shunts the receiving magnetic resonator, at least partially, to reduce the Q of that second resonator, which allows faster detection operation of the second resonator in some applications. The technique allows for fast Q switching in a bimodal resonator system, especially one having resonators having magnetic fields that are orthogonal to one another.