摘要:
The invention provides an ink jet printhead comprising a monolithic printhead with an integral gutter system wherein said gutter system is provided with an end wall adjacent to the ink stream and wherein the side of the wall adjacent the ink direction is generally parallel to the ink direction through said print head.
摘要:
The invention provides an inkjet printhead comprising a lateral flow device nozzle plate, at least one ink nozzle in said plate, and an integral superstructure, containing a gutter, integral to said nozzle plate. A method of using the inkjet printhead is also disclosed.
摘要:
Methods and systems are described herein for driving droplet ejection devices with multi-level waveforms. In one embodiment, a method for driving droplet ejection devices includes applying a multi-level waveform to the droplet ejection devices. The multi-level waveform includes a first section having at least one compensating edge and a second section having at least one drive pulse. The compensating edge has a compensating effect on systematic variation in droplet velocity or droplet mass across the droplet ejection devices. In another embodiment, the compensating edge has a compensating effect on cross-talk between the droplet ejection devices.
摘要:
Methods and systems are described herein for driving droplet ejection devices with multi-level waveforms. In one embodiment, a method for driving droplet ejection devices includes applying a multi-level waveform to the droplet ejection devices. The multi-level waveform includes a first section having at least one compensating edge and a second section having at least one drive pulse. The compensating edge has a compensating effect on systematic variation in droplet velocity or droplet mass across the droplet ejection devices. In another embodiment, the compensating edge has a compensating effect on cross-talk between the droplet ejection devices.
摘要:
Drop formation devices are provided with a sequence of drop formation waveforms to modulate the liquid jets to selectively cause portions of the liquid jets to break off into print drops having a print drop volume Vp and non-print drops having a non-print drop volume Vnp. The print and non-print drop volumes are distinct from each other. A timing delay device shifts the timing of drop formation waveforms supplied to drop formation devices of first and second nozzle groups so that print drops from the first and second nozzle groups are not aligned relative to each other. A charging device includes a charge electrode that is positioned in the vicinity of break off of liquid jets to produce a print drop charge state on drops of volume Vp and to produce a non-print drop charge state on drops of volume Vnp.
摘要:
A method of producing a print on a recording medium includes receiving positive and negative image data for the print to be produced. A selected region of the recording medium is discharged. First-sign charged fluid is deposited in a selected first-sign charged-fluid pattern on the selected region of the recording medium, the first-sign charged-fluid pattern corresponding to the positive image data. Second-sign charged fluid is deposited in a selected second-sign charged-fluid pattern on the selected region of the recording medium, the second-sign charged-fluid pattern corresponding to the negative image data and the second sign being different from the first, sign. Charged dry ink having charge of the second sign is deposited onto the recording medium. The deposited dry ink is attracted to the first-sign charged-fluid pattern and adheres to the recording medium in the first-sign charged-fluid pattern.
摘要:
A liquid dispenser includes a downwardly inclined slide surface. A carrier liquid dispensing channel includes an outlet that exits onto the downwardly inclined slide surface. A carrier liquid source provides a carrier liquid that flows continuously through the carrier liquid dispensing channel, through the outlet of the carrier liquid dispensing channel, and down the downwardly inclined slide surface. A functional liquid supply channel includes an outlet that exits onto the downwardly inclined slide surface. A functional liquid source provides a functional liquid to the outlet of the functional liquid supply channel. A drop formation device, associated with an interface of the outlet of the functional liquid supply channel and the downwardly inclined slide surface, is selectively actuated to form a discrete drop of the functional liquid in the carrier liquid flowing down the downwardly inclined slide surface. The functional liquid is immiscible in the carrier liquid.
摘要:
Fabricating a printhead includes providing a silicon wafer including first and second surfaces and a nozzle membrane layer on the first surface of the silicon wafer. The silicon wafer is sized to a thickness ranging from 10 to 250 microns. A plurality of chambers is defined on the second surface of the silicon wafer by depositing and patterning a mask on the second surface of the silicon wafer. The plurality of chambers is formed in the silicon wafer by etching portions of the silicon wafer that are exposed by the mask. A second wafer, permanently bonded to the second surface of the silicon wafer, includes a material property that is compatible with a material property of the silicon wafer. A preformed fluid channel of the second wafer is in fluid communication with the plurality of chambers of the silicon wafer after permanent bonding of the wafers.
摘要:
A liquid ejection system ejects a liquid jet through a nozzle. A drop formation device modulates the jet causing portions to break off into drop pairs, including first and second drops, separated on average by a drop pair period, and modulates the jet to cause portions to break off into larger third drops separated on average by the same period. A charging device includes a varying electrical potential source providing a waveform including first and second distinct voltage states and a period equal to the drop formation period. The charging device and the formation device are synchronized to produce first, second, and third charge to mass ratios on the first, second, and third drops, respectively. A deflection device causes the first, second, and third drops to travel along first, second, and third paths, respectively. The first and third charge to mass ratios and paths are substantially the same.
摘要:
A method of ejecting liquid drops includes providing liquid under pressure sufficient to eject a liquid jet through a nozzle of a liquid chamber. The liquid jet is modulated to cause portions of the liquid jet to break off into a series of drop pairs traveling along a path using a drop formation device. Each drop pair is separated in time on average by the drop pair period. Each drop pair includes a first drop and a second drop. A charging device is provided that includes a charge electrode associated with the liquid jet and a source of varying electrical potential between the charge electrode and the liquid jet. The source of varying electrical potential provides a waveform that includes a period that is equal to the drop pair period. The waveform also includes a first distinct voltage state and a second distinct voltage state. The charging device is synchronized with the drop formation device to produce a first charge state on the first drop and to produce a second charge state on the second drop. A relative velocity of a first drop and a second drop of a selected drop pair is varied using a drop velocity modulation device to control whether the first drop and the second drop of the selected drop pair combine with each other to form a combined drop. The combined drop has a third charge state. A deflection device is used to cause the first drop having the first charge state to travel along a first path, to cause the second drop having the second charge state to travel along a second path, and to cause the combined drop having the third charge state to travel along a third path.