摘要:
A control information transmission method and a control information receiving terminal are provided. The transmission method comprises: notifying a terminal of setting information of control information in a downlink subframe (S202); and transmitting the control information to the terminal in a preset subframe and other subframes determined according to the setting information (S204). By transmitting the control information on part of the 16m subframes and notifying the 16m terminal of the information of setting the control information, the present invention enables the 16m terminal to shut down the RF transmission at the location of a subframe where the control information is not included and no resource related to the terminal is assigned, and to enter the micro sleep mode, which reduces power consumption of the terminal.
摘要:
A control information transmission method and a control information receiving terminal are provided. The transmission method comprises: notifying a terminal of setting information of control information in a downlink subframe (S202); and transmitting the control information to the terminal in a preset subframe and other subframes determined according to the setting information (S204). By transmitting the control information on part of the 16m subframes and notifying the 16m terminal of the information of setting the control information, the present invention enables the 16m terminal to shut down the RF transmission at the location of a subframe where the control information is not included and no resource related to the terminal is assigned, and to enter the micro sleep mode, which reduces power consumption of the terminal.
摘要:
A method for mapping resource units is disclosed. The method includes: dividing the physical resource unit set to obtain a first physical resource unit set which is in a unit of N1 continuous physical resource units, and a second physical resource unit set into which the remaining physical resource units are put; permuting, in a unit of N2 continuous physical resource units, the physical resource units in the second physical resource unit set; allocating, in a unit of N1 continuous physical resource units, the physical resource units in the first physical resource unit set to each frequency partition, and allocating, in a unit of one physical resource unit, the permuted physical resource units in the second physical resource unit set to each frequency partition. By using the invention, the combination of external mapping under the two-level sub-carrier mapping manner in the partial frequency multiplexing with the localized mapping and the distributed mapping can be realized.
摘要:
A resource mapping method is provided, in which a wireless communication system maps subcarriers to resource units through external permutation and internal permutation, the external permutation comprises: performing the first permutation on n physical resource units in every N1 physical resource units, orderly selecting n1×N1 physical resource units from the n physical resource units obtained from the first permutation, and then performing the second permutation on the remaining n−n1×N1 physical resource units in every N2 physical resource units, wherein n, N1, and N2 are all integers greater than or equal to 1, and N1 is not equal to N2, and n1 is an integer greater than or equal to 0. Frequency selectivity gain and frequency diversity gain may be achieved through the present invention by enabling a base station to select a proper resource scheduling granularity and resource unit types, thereby improving the spectrum efficiency of the future wireless communication system.
摘要:
A flexible OFDM/OFDMA frame structure technology for communication systems is disclosed. The OFDM frame structure technology comprises a configurable-length frame which contains a variable length subframe structure to effectively utilize OFDM bandwidth. Furthermore, the frame structure facilitates spectrum sharing between multiple communication systems.
摘要:
A flexible OFDM/OFDMA frame structure technology for communication systems is disclosed. The OFDM frame structure technology comprises a configurable-length frame which contains a variable length subframe structure to effectively utilize OFDM bandwidth. Furthermore, the frame structure facilitates spectrum sharing between multiple communication systems.
摘要:
A flexible OFDM/OFDMA frame structure technology for communication systems is disclosed. The OFDM frame structure technology comprises a configurable-length frame which contains a variable length subframe structure to effectively utilize OFDM bandwidth. Furthermore, the frame structure facilitates spectrum sharing between multiple communication systems.
摘要:
A resource mapping method is provided, in which a wireless communication system maps subcarriers to resource units through external permutation and internal permutation, the external permutation comprises: performing the first permutation on n physical resource units in every N1 physical resource units, orderly selecting n1×N1 physical resource units from the n physical resource units obtained from the first permutation, and then performing the second permutation on the remaining n−n1×N1 physical resource units in every N2 physical resource units, wherein n, N1, and N2 are all integers greater than or equal to 1, and N1 is not equal to N2, and n1 is an integer greater than or equal to 0. Frequency selectivity gain and frequency diversity gain may be achieved through the present invention by enabling a base station to select a proper resource scheduling granularity and resource unit types, thereby improving the spectrum efficiency of the future wireless communication system.
摘要:
The present invention provides a method for downlink sub-frame allocation in an evolved WiMAX system, which comprises: setting a IEEE 802.16m frame start offset as a parameter of a deployment area range, and setting a starting location of a IEEE 802.16m frame by each IEEE 802.16m base station within a same deployment area range in the system according to the IEEE 802.16m frame start offset; always allocating a start sub-frame of the IEEE 802.16m frame by the IEEE 802.16m base station as a IEEE 802.16m downlink sub-frame, and sending a super frame header including a synchronization symbol at the starting location of a first frame of a super-frame; or sending a synchronization symbol at the starting location of a first frame of a super-frame and sending a super frame header in a start sub-frame of the first frame of the super-frame; and TDM is performed on the synchronization symbol and the super frame header in the first frame of the super-frame.
摘要:
A flexible OFDM/OFDMA frame structure technology for communication systems is disclosed. The OFDM frame structure technology comprises a configurable-length frame which contains a variable length subframe structure to effectively utilize OFDM bandwidth. Furthermore, the frame structure facilitates spectrum sharing between multiple communication systems.