摘要:
A duty cycle control buffer uses an edge detector input stage to detect the transitions of an unpredictable clock signal input. The edge detector generates one shot output signals in synchronism with the clock signal. A pulse width controllable monostable multivibrator converts the one shot signals into rectangular pulses, at the same frequency as the original clock input. The rectangular pulses are inverted and then averaged, to provide a voltage input to one side of an operational amplifier. A reference voltage is supplied to the other side of the operational amplifier, such that the difference between the average voltage and the reference voltage generates an output control voltage from the operational amplifier. This control voltage provides negative feedback to a pulse width control stage within the monostable multivibrator, thereby adjusting the pulse width of the rectangular pulse output until a steady state is reached. A frequency divider circuit may be inserted in front of the edge detector to add a selective frequency dividing capability to the duty cycle control buffer.
摘要:
An N times frequency multiplication circuit uses duty cycle control buffers in combination with edge detectors to provide both multiplication and 50% duty cycle adjustment. Parallel branches of duty cycle control buffers are preset for respective duty cycles of 1/N, 2/N,...,N−1/N. The buffers each receive a common edge detected input signal and simultaneously output their respective duty cycle adjusted clock signals. A rising and falling edge detector generates a pulse train at double the frequency of the 1/N buffer output, while falling edge detectors generate time spaced pulse trains from the outputs of their respective 2/N,...,N−1/N buffers. These pulse trains are combined in an OR gate to provide an output pulse train at a frequency N times the input clock frequency fin. A final stage duty cycle control buffer adjusts the N times fin output signal to a 50% duty cycle.
摘要:
A memory device comprises a memory cell array, a first and a second pre-charging switch circuits, a selecting circuit, an auxiliary memory cell array, a dynamic voltage controller and a sense amplifier. The auxiliary memory cell array comprises an auxiliary read bit line and a plurality of memory cells arranged in a column and electrically connected to the auxiliary read bit line. The second pre-charging switch circuit determines whether or not to supply a reference voltage to each of the aforementioned memory cells according to a pre-charging control signal. The dynamic voltage controller determines whether or not to supply a voltage to the auxiliary read bit line according to the voltage level of the output signal of the selecting circuit. The sense amplifier compares the voltage levels of the output signal of the selecting circuit and the voltage on the auxiliary read bit line to output a sensing result accordingly.
摘要:
A memory device comprises a memory cell array, a first and a second pre-charging switch circuits, a selecting circuit, an auxiliary memory cell array, a dynamic voltage controller and a sense amplifier. The auxiliary memory cell array comprises an auxiliary read bit line and a plurality of memory cells arranged in a column and electrically connected to the auxiliary read bit line. The second pre-charging switch circuit determines whether or not to supply a reference voltage to each of the aforementioned memory cells according to a pre-charging control signal. The dynamic voltage controller determines whether or not to supply a voltage to the auxiliary read bit line according to the voltage level of the output signal of the selecting circuit. The sense amplifier compares the voltage levels of the output signal of the selecting circuit and the voltage on the auxiliary read bit line to output a sensing result accordingly.